Code With Python
39.2K subscribers
886 photos
27 videos
22 files
769 links
This channel delivers clear, practical content for developers, covering Python, Django, Data Structures, Algorithms, and DSA – perfect for learning, coding, and mastering key programming skills.
Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
80 Python Interview Questions.pdf
410.4 KB
πŸš€ 80 Python Interview Questions with Answers & Code! πŸš€

βœ… Why this resource? 
- Covers frequently asked questions in Python interviews 

πŸ“„ Each question comes with detailed answers and ready-to-use code snippets, making it perfect for beginners and experienced developers alike. Whether you're preparing for a job interview or leveling up your Python skills, this guide has you covered! πŸ‘€ 

πŸ”₯ Don’t miss out! Save this, share it, and start preparing today! πŸ’Ό 

#Python #DataScience #Programming #InterviewPrep #Coding #PythonInterview #TechInterview #DataScientist #PythonProgramming #LearnPython #CodeNewbie #CareerGrowth #TechJobs #PythonCode #PythonTips 

https://t.iss.one/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘5
🌟 Unlock the Power of Automation with the Google IT Automation with Python Professional Certificate! πŸš€

Are you ready to take your IT skills to the next level? This professional certificate, offered by Google, is designed to help beginners and IT professionals master the art of automation using Python. Whether you're managing systems, automating tasks, or troubleshooting complex issues, this course equips you with the tools and knowledge to excel in today's tech-driven world. πŸ’»βœ¨

### What You'll Learn:
βœ… Python Programming: Master the fundamentals of Python, one of the most versatile programming languages.
βœ… Automation Techniques: Automate repetitive tasks, manage system configurations, and streamline workflows.
βœ… IT Best Practices: Learn version control with Git, debugging, and problem-solving strategies.
βœ… Real-World Projects: Gain hands-on experience through practical projects that simulate real-world IT challenges.
βœ… Career-Ready Skills: Prepare for in-demand roles like IT Support Specialist, Systems Administrator, and Automation Engineer.

This program is hosted on Coursera and consists of multiple modules, making it beginner-friendly yet comprehensive enough for experienced learners. By the end of the course, you'll have a Professional Certificate from Google, a credential recognized by top employers worldwide. 🌍

πŸ”— Enroll Now: https://www.coursera.org/professional-certificates/google-it-automation

### Why Choose This Course?
- Industry-Recognized Certification: Boost your resume with a credential from Google.
- Flexible Learning: Study at your own pace with online access.
- Hands-On Experience: Apply what you learn through interactive labs and projects.
- Job Opportunities: Open doors to high-paying roles in IT and tech.

Don’t miss this chance to future-proof your career with automation skills that are in demand across industries! πŸš€

---

#GoogleITAutomation #PythonProgramming #ITCertification #Automation #LearnPython #TechSkills #CourseraCourses #ITSupport #SystemsAdministration #CareerGrowth #OnlineLearning #CertificationProgram #DataScience #MachineLearning #TechJobs #FutureSkills #PythonForBeginners #ITProfessional #Upskill #TechEducation
πŸ‘7πŸ”₯4πŸ‘2
In Python, the collections module offers specialized container datatypes that solve real-world coding challenges with elegance and efficiency. These tools are interview favorites for optimizing time complexity and writing clean, professional code! πŸ’‘
import collections  

# defaultdict - Eliminate key errors with auto-initialization
from collections import defaultdict
gradebook = defaultdict(int)
gradebook['Alice'] += 95
print(gradebook['Alice']) # Output: 95
print(gradebook['Bob']) # Output: 0

# defaultdict for grouping operations
anagrams = defaultdict(list)
words = ["eat", "tea", "tan"]
for w in words:
key = ''.join(sorted(w))
anagrams[key].append(w)
print(anagrams['aet']) # Output: ['eat', 'tea']

# Counter - Frequency analysis in one line
from collections import Counter
text = "abracadabra"
freq = Counter(text)
print(freq['a']) # Output: 5
print(freq.most_common(2)) # Output: [('a', 5), ('b', 2)]

# Counter arithmetic for problem-solving
inventory = Counter(apples=10, oranges=5)
sales = Counter(apples=3, oranges=2)
print(inventory - sales) # Output: Counter({'apples': 7, 'oranges': 3})

# namedtuple - Self-documenting data structures
from collections import namedtuple
Employee = namedtuple('Employee', 'name role salary')
dev = Employee('Alex', 'Developer', 95000)
print(dev.role) # Output: Developer
print(dev[2]) # Output: 95000

# deque - Optimal for BFS and sliding windows
from collections import deque
queue = deque([1, 2, 3])
queue.append(4)
queue.popleft()
print(queue) # Output: deque([2, 3, 4])
queue.rotate(1)
print(queue) # Output: deque([4, 2, 3])

# OrderedDict - Track insertion order (LRU cache essential)
from collections import OrderedDict
cache = OrderedDict()
cache['A'] = 1
cache['B'] = 2
cache.move_to_end('A')
cache.popitem(last=False)
print(list(cache.keys())) # Output: ['B', 'A']

# ChainMap - Manage layered configurations
from collections import ChainMap
defaults = {'theme': 'dark', 'font': 'Arial'}
user_prefs = {'theme': 'light'}
settings = ChainMap(user_prefs, defaults)
print(settings['font']) # Output: Arial

# Practical Interview Tip: Anagram detection
print(Counter("secure") == Counter("rescue")) # Output: True

# Pro Tip: Sliding window maximum
def max_sliding_window(nums, k):
dq, result = deque(), []
for i, n in enumerate(nums):
while dq and nums[dq[-1]] < n:
dq.pop()
dq.append(i)
if dq[0] == i - k:
dq.popleft()
if i >= k - 1:
result.append(nums[dq[0]])
return result
print(max_sliding_window([1,3,-1,-3,5,3,6,7], 3)) # Output: [3,3,5,5,6,7]

# Expert Move: Custom LRU Cache implementation
class LRUCache:
def __init__(self, capacity):
self.cache = OrderedDict()
self.capacity = capacity
def get(self, key):
if key not in self.cache:
return -1
self.cache.move_to_end(key)
return self.cache[key]
def put(self, key, value):
if key in self.cache:
del self.cache[key]
self.cache[key] = value
if len(self.cache) > self.capacity:
self.cache.popitem(last=False)
cache = LRUCache(2)
cache.put(1, 10)
cache.put(2, 20)
cache.get(1)
cache.put(3, 30)
print(list(cache.cache.keys())) # Output: [2, 1, 3] β†’ Wait! Correction: Should be [1, 3] (capacity=2 triggers eviction of '2')

# Bonus: Multiset operations with Counter
primes = Counter([2, 3, 5, 7])
odds = Counter([1, 3, 5, 7, 9])
print(primes | odds) # Output: Counter({3:1, 5:1, 7:1, 2:1, 9:1, 1:1})


By: @DatascienceN🌟

#Python #CodingInterview #DataStructures #collections #Programming #TechJobs #Algorithm #LeetCode #DeveloperTips #CareerGrowth
❀1
# Django ORM Comparison - Know both frameworks
# Django model (contrast with SQLAlchemy)
from django.db import models

class Department(models.Model):
name = models.CharField(max_length=50)

class Employee(models.Model):
name = models.CharField(max_length=100)
email = models.EmailField(unique=True)
department = models.ForeignKey(Department, on_delete=models.CASCADE)

# Django query (similar but different syntax)
Employee.objects.filter(department__name="HR").select_related('department')


# Async ORM - Modern Python requirement
# Requires SQLAlchemy 1.4+ and asyncpg
from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession

async_engine = create_async_engine(
"postgresql+asyncpg://user:pass@localhost/db",
echo=True,
)
async_session = AsyncSession(async_engine)

async with async_session.begin():
result = await async_session.execute(
select(Employee).where(Employee.name == "Alice")
)
employee = result.scalar_one()


# Testing Strategies - Interview differentiator
from unittest import mock

# Mock database for unit tests
with mock.patch('sqlalchemy.create_engine') as mock_engine:
mock_conn = mock.MagicMock()
mock_engine.return_value.connect.return_value = mock_conn

# Test your ORM-dependent code
create_employee("Test", "[email protected]")
mock_conn.execute.assert_called()


# Production Monitoring - Track slow queries
from sqlalchemy import event

@event.listens_for(engine, "before_cursor_execute")
def before_cursor(conn, cursor, statement, params, context, executemany):
conn.info.setdefault('query_start_time', []).append(time.time())

@event.listens_for(engine, "after_cursor_execute")
def after_cursor(conn, cursor, statement, params, context, executemany):
total = time.time() - conn.info['query_start_time'].pop(-1)
if total > 0.1: # Log slow queries
print(f"SLOW QUERY ({total:.2f}s): {statement}")


# Interview Power Move: Implement caching layer
from functools import lru_cache

class CachedEmployeeRepository(EmployeeRepository):
@lru_cache(maxsize=100)
def get_by_id(self, employee_id):
return super().get_by_id(employee_id)

def invalidate_cache(self, employee_id):
self.get_by_id.cache_clear()

# Reduces database hits by 70% in read-heavy applications


# Pro Tip: Schema versioning in CI/CD pipelines
# Sample .gitlab-ci.yml snippet
deploy_db:
stage: deploy
script:
- alembic upgrade head
- pytest tests/db_tests.py # Verify schema compatibility
only:
- main


# Real-World Case Study: E-commerce inventory system
class Product(Base):
__tablename__ = 'products'
id = Column(Integer, primary_key=True)
sku = Column(String(20), unique=True)
stock = Column(Integer, default=0)

# Atomic stock update (prevents race conditions)
def decrement_stock(self, quantity, session):
result = session.query(Product).filter(
Product.id == self.id,
Product.stock >= quantity
).update({"stock": Product.stock - quantity})
if not result:
raise ValueError("Insufficient stock")

# Usage during checkout
product.decrement_stock(2, session)


By: @DATASCIENCE4 πŸ”’

#Python #ORM #SQLAlchemy #Django #Database #BackendDevelopment #CodingInterview #WebDevelopment #TechJobs #SystemDesign #SoftwareEngineering #DataEngineering #CareerGrowth #APIs #Microservices #DatabaseDesign #TechTips #DeveloperTools #Programming #CareerTips
❀3
# Interview Power Move: Parallel Merging
from concurrent.futures import ThreadPoolExecutor
from PyPDF2 import PdfMerger

def parallel_merge(pdf_list, output, max_workers=4):
chunks = [pdf_list[i::max_workers] for i in range(max_workers)]
temp_files = []

def merge_chunk(chunk, idx):
temp = f"temp_{idx}.pdf"
merger = PdfMerger()
for pdf in chunk:
merger.append(pdf)
merger.write(temp)
return temp

with ThreadPoolExecutor() as executor:
temp_files = list(executor.map(merge_chunk, chunks, range(max_workers)))

# Final merge of chunks
final_merger = PdfMerger()
for temp in temp_files:
final_merger.append(temp)
final_merger.write(output)

parallel_merge(["doc1.pdf", "doc2.pdf", ...], "parallel_merge.pdf")


# Pro Tip: Validate PDFs before merging
from PyPDF2 import PdfReader

def is_valid_pdf(path):
try:
with open(path, "rb") as f:
reader = PdfReader(f)
return len(reader.pages) > 0
except:
return False

valid_pdfs = [f for f in pdf_files if is_valid_pdf(f)]
merger.append(valid_pdfs) # Only merge valid files


# Real-World Case Study: Invoice Processing Pipeline
import glob
from PyPDF2 import PdfMerger

def process_monthly_invoices():
# 1. Download invoices from SFTP
download_invoices("sftp://vendor.com/invoices/*.pdf")

# 2. Validate and sort
invoices = sorted(
[f for f in glob.glob("invoices/*.pdf") if is_valid_pdf(f)],
key=lambda x: extract_invoice_date(x)
)

# 3. Merge with cover page
merger = PdfMerger()
merger.append("cover_template.pdf")
for inv in invoices:
merger.append(inv, outline_item=get_client_name(inv))

# 4. Add metadata and encrypt
merger.add_metadata({"/InvoiceCount": str(len(invoices))})
merger.encrypt(owner_pwd="finance_team_2023")
merger.write(f"Q3_Invoices_{datetime.now().strftime('%Y%m')}.pdf")

# 5. Upload to secure storage
upload_to_s3("secure-bucket/processed/", "Q3_Invoices.pdf")

process_monthly_invoices()


By: https://t.iss.one/DataScience4

#Python #PDFProcessing #DocumentAutomation #PyPDF2 #CodingInterview #BackendDevelopment #FileHandling #DataEngineering #TechJobs #Programming #SystemDesign #DeveloperTips #CareerGrowth #CloudComputing #Docker #Microservices #Productivity #TechTips #Python3 #SoftwareEngineering
Forwarded from Machine Learning
In Python, building AI-powered Telegram bots unlocks massive potential for image generation, processing, and automationβ€”master this to create viral tools and ace full-stack interviews! πŸ€–

# Basic Bot Setup - The foundation (PTB v20+ Async)
from telegram.ext import Application, CommandHandler, MessageHandler, filters

async def start(update, context):
await update.message.reply_text(
"✨ AI Image Bot Active!\n"
"/generate - Create images from text\n"
"/enhance - Improve photo quality\n"
"/help - Full command list"
)

app = Application.builder().token("YOUR_BOT_TOKEN").build()
app.add_handler(CommandHandler("start", start))
app.run_polling()


# Image Generation - DALL-E Integration (OpenAI)
import openai
from telegram.ext import ContextTypes

openai.api_key = os.getenv("OPENAI_API_KEY")

async def generate(update: Update, context: ContextTypes.DEFAULT_TYPE):
if not context.args:
await update.message.reply_text("❌ Usage: /generate cute robot astronaut")
return

prompt = " ".join(context.args)
try:
response = openai.Image.create(
prompt=prompt,
n=1,
size="1024x1024"
)
await update.message.reply_photo(
photo=response['data'][0]['url'],
caption=f"🎨 Generated: *{prompt}*",
parse_mode="Markdown"
)
except Exception as e:
await update.message.reply_text(f"πŸ”₯ Error: {str(e)}")

app.add_handler(CommandHandler("generate", generate))


Learn more: https://hackmd.io/@husseinsheikho/building-AI-powered-Telegram-bots

#Python #TelegramBot #AI #ImageGeneration #StableDiffusion #OpenAI #MachineLearning #CodingInterview #FullStack #Chatbots #DeepLearning #ComputerVision #Programming #TechJobs #DeveloperTips #CareerGrowth #CloudComputing #Docker #APIs #Python3 #Productivity #TechTips


https://t.iss.one/DataScienceM 🦾
Please open Telegram to view this post
VIEW IN TELEGRAM