Python | Machine Learning | Coding | R
67.5K subscribers
1.26K photos
89 videos
154 files
909 links
Help and ads: @hussein_sheikho

Discover powerful insights with Python, Machine Learning, Coding, and Rโ€”your essential toolkit for data-driven solutions, smart alg

List of our channels:
https://t.iss.one/addlist/8_rRW2scgfRhOTc0

https://telega.io/?r=nikapsOH
Download Telegram
PySpark power guide.pdf
1.2 MB
๐—ช๐—ต๐˜† ๐—˜๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐—”๐˜€๐—ฝ๐—ถ๐—ฟ๐—ถ๐—ป๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ ๐—ฆ๐—ต๐—ผ๐˜‚๐—น๐—ฑ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ

If youโ€™re working with large datasets, tools like Pandas can hit limits fast. Thatโ€™s where ๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ comes inโ€”designed to scale effortlessly across big data workloads.

๐—ช๐—ต๐—ฎ๐˜ ๐—ถ๐˜€ ๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ?
PySpark is the Python API for Apache Sparkโ€”a powerful engine for distributed data processing. It's widely used to build scalable ETL pipelines and handle millions of records efficiently.

๐—ช๐—ต๐˜† ๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ ๐—œ๐˜€ ๐—ฎ ๐— ๐˜‚๐˜€๐˜-๐—›๐—ฎ๐˜ƒ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐˜€:
โœ”๏ธ Scales to handle massive datasets
โœ”๏ธ Designed for distributed computing
โœ”๏ธ Blends SQL with Python for flexible logic
โœ”๏ธ Perfect for building end-to-end ETL pipelines
โœ”๏ธ Supports integrations like Hive, Kafka, and Delta Lake

๐—ค๐˜‚๐—ถ๐—ฐ๐—ธ ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ:

from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("Example").getOrCreate()
df = spark.read.csv("data.csv", header=True, inferSchema=True)
df.filter(df["age"] > 30).show()


#PySpark #DataEngineering #BigData #ETL #ApacheSpark #DistributedComputing #PythonForData #DataPipelines #SparkSQL #ScalableAnalytics


โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘13โค5
๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ_๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ_๐—Ÿ๐—ถ๐—ธ๐—ฒ_๐—ฎ_๐—ฃ๐—ฟ๐—ผ_โ€“_๐—”๐—น๐—น_๐—ถ๐—ป_๐—ข๐—ป๐—ฒ_๐—š๐˜‚๐—ถ๐—ฑ๐—ฒ_๐—ณ๐—ผ๐—ฟ_๐——๐—ฎ๐˜๐—ฎ_๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐˜€.pdf
2.6 MB
๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ ๐—Ÿ๐—ถ๐—ธ๐—ฒ ๐—ฎ ๐—ฃ๐—ฟ๐—ผ โ€“ ๐—”๐—น๐—น-๐—ถ๐—ป-๐—ข๐—ป๐—ฒ ๐—š๐˜‚๐—ถ๐—ฑ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐˜€

If you're a data engineer, aspiring Spark developer, or someone preparing for big data interviews โ€” this one is for you.
Iโ€™m sharing a powerful, all-in-one PySpark notes sheet that covers both fundamentals and advanced techniques for real-world usage and interviews.

๐—ช๐—ต๐—ฎ๐˜'๐˜€ ๐—ถ๐—ป๐˜€๐—ถ๐—ฑ๐—ฒ? โ€ข Spark vs MapReduce
โ€ข Spark Architecture โ€“ Driver, Executors, DAG
โ€ข RDDs vs DataFrames vs Datasets
โ€ข SparkContext vs SparkSession
โ€ข Transformations: map, flatMap, reduceByKey, groupByKey
โ€ข Optimizations โ€“ caching, persisting, skew handling, salting
โ€ข Joins โ€“ Broadcast joins, Shuffle joins
โ€ข Deployment modes โ€“ Cluster vs Client
โ€ข Real interview-ready Q&A from top use cases
โ€ข CSV, JSON, Parquet, ORC โ€“ Format comparisons
โ€ข Common commands, schema creation, data filtering, null handling

๐—ช๐—ต๐—ผ ๐—ถ๐˜€ ๐˜๐—ต๐—ถ๐˜€ ๐—ณ๐—ผ๐—ฟ? Data Engineers, Spark Developers, Data Enthusiasts, and anyone preparing for interviews or working on distributed systems.

#PySpark #DataEngineering #BigData #SparkArchitecture #RDDvsDataFrame #SparkOptimization #DistributedComputing #SparkInterviewPrep #DataPipelines #ApacheSpark #MapReduce #ETL #BroadcastJoin #ClusterComputing #SparkForEngineers

โœ‰๏ธ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค9๐Ÿ‘1
๐Ÿค–๐Ÿง  Pixeltable: The Future of Declarative Data Infrastructure for Multimodal AI Workloads

๐Ÿ—“๏ธ 08 Nov 2025
๐Ÿ“š AI News & Trends

In the rapidly evolving AI landscape, building intelligent applications is no longer just about having powerful models. The real challenge lies in handling complex data pipelines, integrating multiple systems and scaling multimodal workloads efficiently. Traditional AI app development stacks involve databases, vector stores, ETL pipelines, model serving layers, orchestration tools, caching systems and lineage tracking ...

#Pixeltable #DeclarativeDataInfrastructure #MultimodalAI #AIDevelopment #DataPipelines #AIWorkloads