Python | Machine Learning | Coding | R
67.3K subscribers
1.25K photos
89 videos
153 files
905 links
Help and ads: @hussein_sheikho

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

List of our channels:
https://t.iss.one/addlist/8_rRW2scgfRhOTc0

https://telega.io/?r=nikapsOH
Download Telegram
🔗 Machine Learning from Scratch by Danny Friedman

This book is for readers looking to learn new #machinelearning algorithms or understand algorithms at a deeper level. Specifically, it is intended for readers interested in seeing machine learning algorithms derived from start to finish. Seeing these derivations might help a reader previously unfamiliar with common algorithms understand how they work intuitively. Or, seeing these derivations might help a reader experienced in modeling understand how different #algorithms create the models they do and the advantages and disadvantages of each one.

This book will be most helpful for those with practice in basic modeling. It does not review best practices—such as feature engineering or balancing response variables—or discuss in depth when certain models are more appropriate than others. Instead, it focuses on the elements of those models.


https://dafriedman97.github.io/mlbook/content/introduction.html

#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming  #Keras

https://t.iss.one/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍112💯2
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9
🔥 Trending Repository: best-of-ml-python

📝 Description: 🏆 A ranked list of awesome machine learning Python libraries. Updated weekly.

🔗 Repository URL: https://github.com/lukasmasuch/best-of-ml-python

🌐 Website: https://ml-python.best-of.org

📖 Readme: https://github.com/lukasmasuch/best-of-ml-python#readme

📊 Statistics:
🌟 Stars: 22.3K stars
👀 Watchers: 444
🍴 Forks: 3K forks

💻 Programming Languages: Not available

🏷️ Related Topics:
#python #nlp #data_science #machine_learning #deep_learning #tensorflow #scikit_learn #keras #ml #data_visualization #pytorch #transformer #data_analysis #gpt #automl #jax #data_visualizations #gpt_3 #chatgpt


==================================
🧠 By: https://t.iss.one/DataScienceM
7
💡 Building a Simple Convolutional Neural Network (CNN)

Constructing a basic Convolutional Neural Network (CNN) is a fundamental step in deep learning for image processing. Using TensorFlow's Keras API, we can define a network with convolutional, pooling, and dense layers to classify images. This example sets up a simple CNN to recognize handwritten digits from the MNIST dataset.

import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
import numpy as np

# 1. Load and preprocess the MNIST dataset
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Reshape images for CNN: (batch_size, height, width, channels)
# MNIST images are 28x28 grayscale, so channels = 1
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255

# 2. Define the CNN architecture
model = models.Sequential()

# First Convolutional Block
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))

# Second Convolutional Block
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))

# Flatten the 3D output to 1D for the Dense layers
model.add(layers.Flatten())

# Dense (fully connected) layers
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax')) # Output layer for 10 classes (digits 0-9)

# 3. Compile the model
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

# Print a summary of the model layers
model.summary()

# 4. Train the model (uncomment to run training)
# print("\nTraining the model...")
# model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_split=0.1)

# 5. Evaluate the model (uncomment to run evaluation)
# print("\nEvaluating the model...")
# test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
# print(f"Test accuracy: {test_acc:.4f}")


Code explanation: This script defines a simple CNN using Keras. It loads and normalizes MNIST images. The Sequential model adds Conv2D layers for feature extraction, MaxPooling2D for downsampling, a Flatten layer to transition to 1D, and Dense layers for classification. The model is then compiled with an optimizer, loss function, and metrics, and a summary of its architecture is printed. Training and evaluation steps are included as commented-out examples.

#Python #DeepLearning #CNN #Keras #TensorFlow

━━━━━━━━━━━━━━━
By: @CodeProgrammer
16
💡 Keras: Building Neural Networks Simply

Keras is a high-level deep learning API, now part of TensorFlow, designed for fast and easy experimentation. This guide covers the fundamental workflow: defining, compiling, training, and using a neural network model.

from tensorflow import keras
from tensorflow.keras import layers

# Define a Sequential model
model = keras.Sequential([
# Input layer with 64 neurons, expecting flat input data
layers.Dense(64, activation="relu", input_shape=(784,)),
# A hidden layer with 32 neurons
layers.Dense(32, activation="relu"),
# Output layer with 10 neurons for 10-class classification
layers.Dense(10, activation="softmax")
])

model.summary()

Model Definition: keras.Sequential creates a simple, layer-by-layer model.
layers.Dense is a standard fully-connected layer. The first layer must specify the input_shape.
activation functions like "relu" introduce non-linearity, while "softmax" is used on the output layer for multi-class classification to produce probabilities.

# (Continuing from the previous step)
model.compile(
optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)

print("Model compiled successfully.")

Compilation: .compile() configures the model for training.
optimizer is the algorithm used to update the model's weights (e.g., 'adam' is a popular choice).
loss is the function the model tries to minimize during training. sparse_categorical_crossentropy is common for integer-based classification labels.
metrics are used to monitor the training and testing steps. Here, we track accuracy.

import numpy as np

# Create dummy training data
x_train = np.random.random((1000, 784))
y_train = np.random.randint(10, size=(1000,))

# Train the model
history = model.fit(
x_train,
y_train,
epochs=5,
batch_size=32,
verbose=0 # Hides the progress bar for a cleaner output
)

print(f"Training complete. Final accuracy: {history.history['accuracy'][-1]:.4f}")
# Output (will vary):
# Training complete. Final accuracy: 0.4570

Training: The .fit() method trains the model on your data.
x_train and y_train are your input features and target labels.
epochs defines how many times the model will see the entire dataset.
batch_size is the number of samples processed before the model is updated.

# Create a single dummy sample to test
x_test = np.random.random((1, 784))

# Get the model's prediction
predictions = model.predict(x_test)
predicted_class = np.argmax(predictions[0])

print(f"Predicted class: {predicted_class}")
print(f"Confidence scores: {predictions[0].round(2)}")
# Output (will vary):
# Predicted class: 3
# Confidence scores: [0.09 0.1 0.1 0.12 0.1 0.09 0.11 0.1 0.09 0.1 ]

Prediction: .predict() is used to make predictions on new, unseen data.
• For a classification model with a softmax output, this returns an array of probabilities for each class.
np.argmax() is used to find the index (the class) with the highest probability score.

#Keras #TensorFlow #DeepLearning #MachineLearning #Python

━━━━━━━━━━━━━━━
By: @CodeProgrammer
🔥1