Forwarded from Data Science Jupyter Notebooks
π₯ Trending Repository: best-of-ml-python
π Description: π A ranked list of awesome machine learning Python libraries. Updated weekly.
π Repository URL: https://github.com/lukasmasuch/best-of-ml-python
π Website: https://ml-python.best-of.org
π Readme: https://github.com/lukasmasuch/best-of-ml-python#readme
π Statistics:
π Stars: 22.3K stars
π Watchers: 444
π΄ Forks: 3K forks
π» Programming Languages: Not available
π·οΈ Related Topics:
==================================
π§ By: https://t.iss.one/DataScienceM
π Description: π A ranked list of awesome machine learning Python libraries. Updated weekly.
π Repository URL: https://github.com/lukasmasuch/best-of-ml-python
π Website: https://ml-python.best-of.org
π Readme: https://github.com/lukasmasuch/best-of-ml-python#readme
π Statistics:
π Stars: 22.3K stars
π Watchers: 444
π΄ Forks: 3K forks
π» Programming Languages: Not available
π·οΈ Related Topics:
#python #nlp #data_science #machine_learning #deep_learning #tensorflow #scikit_learn #keras #ml #data_visualization #pytorch #transformer #data_analysis #gpt #automl #jax #data_visualizations #gpt_3 #chatgpt
==================================
π§ By: https://t.iss.one/DataScienceM
β€7
  In Python, enhanced 
#python #forloops #enumerate #bestpractices
βοΈ  @DataScience4
for loops with enumerate() provide both the index and value of items in an iterable, making it ideal for tasks needing positional awareness without manual counters. This is more Pythonic and efficient than using range(len()) for list traversals.fruits = ['apple', 'banana', 'cherry']
for index, fruit in enumerate(fruits):
print(f"{index}: {fruit}")
# Output:
# 0: apple
# 1: banana
# 2: cherry
# With start offset:
for index, fruit in enumerate(fruits, start=1):
print(f"{index}: {fruit}")
# 1: apple
# 2: banana
# 3: cherry
#python #forloops #enumerate #bestpractices
Please open Telegram to view this post
    VIEW IN TELEGRAM
  β€4π3
  In Python, lists are versatile mutable sequences with built-in methods for adding, removing, searching, sorting, and moreβcovering all common scenarios like dynamic data manipulation, queues, or stacks. Below is a complete breakdown of all list methods, each with syntax, an example, and output, plus key built-in functions for comprehensive use.
π Adding Elements
β¦ append(x): Adds a single element to the end.
  
β¦ extend(iterable): Adds all elements from an iterable to the end.
  
β¦ insert(i, x): Inserts x at index i (shifts elements right).
  
π Removing Elements
β¦ remove(x): Removes the first occurrence of x (raises ValueError if not found).
  
β¦ pop(i=-1): Removes and returns the element at index i (default: last).
  
β¦ clear(): Removes all elements.
  
π Searching and Counting
β¦ count(x): Returns the number of occurrences of x.
  
β¦ index(x[, start[, end]]): Returns the lowest index of x in the slice (raises ValueError if not found).
  
π Ordering and Copying
β¦ sort(key=None, reverse=False): Sorts the list in place (ascending by default; stable sort).
  
β¦ reverse(): Reverses the elements in place.
  
β¦ copy(): Returns a shallow copy of the list.
  
π Built-in Functions for Lists (Common Cases)
β¦ len(lst): Returns the number of elements.
  
β¦ min(lst): Returns the smallest element (raises ValueError if empty).
  
β¦ max(lst): Returns the largest element.
  
β¦ sum(lst[, start=0]): Sums the elements (start adds an offset).
  
β¦ sorted(lst, key=None, reverse=False): Returns a new sorted list (non-destructive).
  
These cover all standard operations (O(1) for append/pop from end, O(n) for most others). Use slicing
#python #lists #datastructures #methods #examples #programming
β  @DataScience4
π Adding Elements
β¦ append(x): Adds a single element to the end.
lst = [1, 2]
lst.append(3)
print(lst) # Output: [1, 2, 3]
β¦ extend(iterable): Adds all elements from an iterable to the end.
lst = [1, 2]
lst.extend([3, 4])
print(lst) # Output: [1, 2, 3, 4]
β¦ insert(i, x): Inserts x at index i (shifts elements right).
lst = [1, 3]
lst.insert(1, 2)
print(lst) # Output: [1, 2, 3]
π Removing Elements
β¦ remove(x): Removes the first occurrence of x (raises ValueError if not found).
lst = [1, 2, 2]
lst.remove(2)
print(lst) # Output: [1, 2]
β¦ pop(i=-1): Removes and returns the element at index i (default: last).
lst = [1, 2, 3]
item = lst.pop(1)
print(item, lst) # Output: 2 [1, 3]
β¦ clear(): Removes all elements.
lst = [1, 2, 3]
lst.clear()
print(lst) # Output: []
π Searching and Counting
β¦ count(x): Returns the number of occurrences of x.
lst = [1, 2, 2, 3]
print(lst.count(2)) # Output: 2
β¦ index(x[, start[, end]]): Returns the lowest index of x in the slice (raises ValueError if not found).
lst = [1, 2, 3, 2]
print(lst.index(2)) # Output: 1
π Ordering and Copying
β¦ sort(key=None, reverse=False): Sorts the list in place (ascending by default; stable sort).
lst = [3, 1, 2]
lst.sort()
print(lst) # Output: [1, 2, 3]
β¦ reverse(): Reverses the elements in place.
lst = [1, 2, 3]
lst.reverse()
print(lst) # Output: [3, 2, 1]
β¦ copy(): Returns a shallow copy of the list.
lst = [1, 2]
new_lst = lst.copy()
print(new_lst) # Output: [1, 2]
π Built-in Functions for Lists (Common Cases)
β¦ len(lst): Returns the number of elements.
lst = [1, 2, 3]
print(len(lst)) # Output: 3
β¦ min(lst): Returns the smallest element (raises ValueError if empty).
lst = [3, 1, 2]
print(min(lst)) # Output: 1
β¦ max(lst): Returns the largest element.
lst = [3, 1, 2]
print(max(lst)) # Output: 3
β¦ sum(lst[, start=0]): Sums the elements (start adds an offset).
lst = [1, 2, 3]
print(sum(lst)) # Output: 6
β¦ sorted(lst, key=None, reverse=False): Returns a new sorted list (non-destructive).
lst = [3, 1, 2]
print(sorted(lst)) # Output: [1, 2, 3]
These cover all standard operations (O(1) for append/pop from end, O(n) for most others). Use slicing
lst[start:end:step] for advanced extraction, like lst[1:3] outputs ``.#python #lists #datastructures #methods #examples #programming
Please open Telegram to view this post
    VIEW IN TELEGRAM
  β€13π7π2
  In Python, handling CSV files is straightforward using the built-in 
#python #csv #pandas #datahandling #fileio #interviewtips
π @DataScience4
csv module for reading and writing tabular data, or pandas for advanced analysisβessential for data processing tasks like importing/exporting datasets in interviews.# Reading CSV with csv module (basic)
import csv
with open('data.csv', 'r') as file:
reader = csv.reader(file)
data = list(reader) # data = [['Name', 'Age'], ['Alice', '30'], ['Bob', '25']]
# Writing CSV with csv module
import csv
with open('output.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['Name', 'Age']) # Header
writer.writerows([['Alice', 30], ['Bob', 25]]) # Data rows
# Advanced: Reading with pandas (handles headers, missing values)
import pandas as pd
df = pd.read_csv('data.csv') # df = DataFrame with columns 'Name', 'Age'
print(df.head()) # Output: First 5 rows preview
# Writing with pandas
df.to_csv('output.csv', index=False) # Saves without row indices
#python #csv #pandas #datahandling #fileio #interviewtips
π @DataScience4
β€4π4
  The course gathers up-to-date information on #Python programming and creating advanced AI assistants based on it.
β’ Content: The course includes 9 lectures, supplemented with video materials, detailed presentations, and code examples. Learning to develop AI agents is accessible even for coding beginners.
β’ Topics: The lectures cover topics such as #RAG (Retrieval-Augmented Generation), embeddings, #agents, and the #MCP protocol.
The perfect weekend plan is to dive deep into #AI!
https://github.com/orgs/azure-ai-foundry/discussions/166
https://t.iss.one/CodeProgrammer
Please open Telegram to view this post
    VIEW IN TELEGRAM
  π6β€3π₯1π1
  In Python, loops are essential for repeating code efficiently: for loops iterate over known sequences (like lists or ranges) when you know the number of iterations, while loops run based on a condition until it's false (ideal for unknown iteration counts or sentinel values), and nested loops handle multi-dimensional data by embedding one inside anotherβuse break/continue for control, and comprehensions for concise alternatives in interviews.
#python #loops #forloop #whileloop #nestedloops #comprehensions #interviewtips #controlflow
β  https://t.iss.one/CodeProgrammer
# For loop: Use for fixed iterations over iterables (e.g., processing lists)
fruits = ["apple", "banana", "cherry"]
for fruit in fruits: # Iterates each element
print(fruit) # Output: apple \n banana \n cherry
for i in range(3): # Numeric sequence (start=0, stop=3)
print(i) # Output: 0 \n 1 \n 2
# While loop: Use when iterations depend on a dynamic condition (e.g., user input, convergence)
count = 0
while count < 3: # Runs as long as condition is True
print(count)
count += 1 # Increment to avoid infinite loop! Output: 0 \n 1 \n 2
# Nested loops: Use for 2D data (e.g., matrices, grids); outer for rows, inner for columns
matrix = [[1, 2], [3, 4]]
for row in matrix: # Outer: each sublist
for num in row: # Inner: elements in row
print(num) # Output: 1 \n 2 \n 3 \n 4
# Control statements: break (exit loop), continue (skip iteration)
for i in range(5):
if i == 2:
continue # Skip 2
if i == 4:
break # Exit at 4
print(i) # Output: 0 \n 1 \n 3
# List comprehension: Concise for loop alternative (use for simple transformations/filtering)
squares = [x**2 for x in range(5) if x % 2 == 0] # Even squares
print(squares) # Output: [0, 4, 16]
#python #loops #forloop #whileloop #nestedloops #comprehensions #interviewtips #controlflow
Please open Telegram to view this post
    VIEW IN TELEGRAM
  Telegram
  
  Python | Machine Learning | Coding | R
  Help and ads: @hussein_sheikho
Discover powerful insights with Python, Machine Learning, Coding, and Rβyour essential toolkit for data-driven solutions, smart alg
List of our channels:
https://t.iss.one/addlist/8_rRW2scgfRhOTc0
https://telega.io/?r=nikapsOH
Discover powerful insights with Python, Machine Learning, Coding, and Rβyour essential toolkit for data-driven solutions, smart alg
List of our channels:
https://t.iss.one/addlist/8_rRW2scgfRhOTc0
https://telega.io/?r=nikapsOH
β€3π2
  In Python, the 
Regex tips: Escape special chars with \ (e.g., . for literal dot); use raw strings (r""); test incrementally to avoid frustrationβcommon pitfalls include forgetting anchors (^/$) or overusing.*. For performance, compile patterns; in interviews, explain your pattern step-by-step for clarity. #python #regex #re_module #patterns #textprocessing #interviews #stringmatching
π±  https://t.iss.one/CodeProgrammer
re module handles regular expressions (regex) for pattern matching in stringsβvital for text processing like validating emails, extracting data from logs, or cleaning user input in interviews; it's compiled for efficiency but can be complex, so start simple and test with tools like regex101.com.import re
# Basic search: Find if pattern exists (returns Match object or None)
txt = "The rain in Spain"
match = re.search(r"Spain", txt) # r"" for raw string (avoids escaping issues)
if match:
print(match.group()) # Output: Spain (full match)
print(match.start(), match.end()) # Output: 12 17 (positions)
# findall: Extract all matches as list (non-overlapping)
txt = "The rain in Spain stays mainly in the plain"
emails = re.findall(r"\w+@\w+\.com", "Contact: [email protected] or [email protected]")
print(emails) # Output: ['[email protected]', '[email protected]']
# split: Divide string at matches (like str.split but with patterns)
words = re.split(r"\s+", "Hello world\twith spaces") # \s+ matches whitespace
print(words) # Output: ['Hello', 'world', 'with', 'spaces']
# sub: Replace matches (count limits replacements; use \1 for groups)
cleaned = re.sub(r"\d+", "***", "Phone: 123-456-7890 or 098-765-4321", count=1)
print(cleaned) # Output: Phone: *** or 098-765-4321 (first number replaced)
# Metacharacters basics:. (any char except \n), ^ (start), $ (end), * (0+), + (1+),? (0-1)
match = re.search(r"^The.*Spain$", txt) # ^ start, $ end,. any, * 0+ of previous
print(match.group() if match else "No match") # Output: The rain in Spain
# Character classes: \d (digit), \w (word char), [a-z] (range), [^0-9] (not digit)
nums = re.findall(r"\d+", "abc123def456") # \d+ one or more digits
print(nums) # Output: ['123', '456']
words_only = re.findall(r"\w+", "Hello123! World?") # \w+ word chars (alphanum + _)
print(words_only) # Output: ['Hello123', 'World']
# Groups: () capture parts; use for extraction or alternation
date = re.search(r"(\d{4})-(\d{2})-(\d{2})", "Event on 2023-10-27")
if date:
print(date.groups()) # Output: ('2023', '10', '27') (tuples of captures)
print(date.group(1)) # Output: 2023 (first group)
# Alternation: | for OR (e.g., cat|dog)
animals = re.findall(r"cat|dog", "I have a cat and a dog")
print(animals) # Output: ['cat', 'dog']
# Flags: re.IGNORECASE (case-insensitive), re.MULTILINE (^/$ per line)
text = "Spain\nin\nSpain"
matches = re.findall(r"^Spain", text, re.MULTILINE) # ^ matches start of each line
print(matches) # Output: ['Spain', 'Spain']
# Advanced: Greedy vs non-greedy (*? or +?) to match minimal
html = "<div><p>Text</p></div>"
content = re.search(r"<div>.*?</div>", html) #.*? non-greedy (stops at first </div>)
print(content.group()) # Output: <div><p>Text</p></div>
# Edge cases: Empty string, no match
print(re.search(r"a", "")) # Output: None
print(re.findall(r"\d", "no numbers")) # Output: []
# Compile for reuse (faster for multiple uses)
pattern = re.compile(r"\w+@\w+\.com")
email = pattern.search("[email protected]")
print(email.group() if email else "No email") # Output: [email protected]
Regex tips: Escape special chars with \ (e.g., . for literal dot); use raw strings (r""); test incrementally to avoid frustrationβcommon pitfalls include forgetting anchors (^/$) or overusing.*. For performance, compile patterns; in interviews, explain your pattern step-by-step for clarity. #python #regex #re_module #patterns #textprocessing #interviews #stringmatching
Please open Telegram to view this post
    VIEW IN TELEGRAM
  Telegram
  
  Python | Machine Learning | Coding | R
  Help and ads: @hussein_sheikho
Discover powerful insights with Python, Machine Learning, Coding, and Rβyour essential toolkit for data-driven solutions, smart alg
List of our channels:
https://t.iss.one/addlist/8_rRW2scgfRhOTc0
https://telega.io/?r=nikapsOH
Discover powerful insights with Python, Machine Learning, Coding, and Rβyour essential toolkit for data-driven solutions, smart alg
List of our channels:
https://t.iss.one/addlist/8_rRW2scgfRhOTc0
https://telega.io/?r=nikapsOH
β€6
  Forwarded from Python Data Science Jobs & Interviews
In Python, NumPy is the cornerstone of scientific computing, offering high-performance multidimensional arrays and tools for working with themβcritical for data science interviews and real-world applications! π  
By: @DataScienceQ π
#Python #NumPy #DataScience #CodingInterview #MachineLearning #ScientificComputing #DataAnalysis #Programming #TechJobs #DeveloperTips
import numpy as np
# Array Creation - The foundation of NumPy
arr = np.array([1, 2, 3])
zeros = np.zeros((2, 3)) # 2x3 matrix of zeros
ones = np.ones((2, 2), dtype=int) # Integer matrix
arange = np.arange(0, 10, 2) # [0 2 4 6 8]
linspace = np.linspace(0, 1, 5) # [0. 0.25 0.5 0.75 1. ]
print(linspace)
# Array Attributes - Master your data's structure
matrix = np.array([[1, 2, 3], [4, 5, 6]])
print(matrix.shape) # Output: (2, 3)
print(matrix.ndim) # Output: 2
print(matrix.dtype) # Output: int64
print(matrix.size) # Output: 6
# Indexing & Slicing - Precision data access
data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(data[1, 2]) # Output: 6 (row 1, col 2)
print(data[0:2, 1:3]) # Output: [[2 3], [5 6]]
print(data[:, -1]) # Output: [3 6 9] (last column)
# Reshaping Arrays - Transform dimensions effortlessly
flat = np.arange(6)
reshaped = flat.reshape(2, 3)
raveled = reshaped.ravel()
print(reshaped)
# Output: [[0 1 2], [3 4 5]]
print(raveled) # Output: [0 1 2 3 4 5]
# Stacking Arrays - Combine datasets vertically/horizontally
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
print(np.vstack((a, b))) # Vertical stack
# Output: [[1 2 3], [4 5 6]]
print(np.hstack((a, b))) # Horizontal stack
# Output: [1 2 3 4 5 6]
# Mathematical Operations - Vectorized calculations
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])
print(x + y) # Output: [5 7 9]
print(x * 2) # Output: [2 4 6]
print(np.dot(x, y)) # Output: 32 (1*4 + 2*5 + 3*6)
# Broadcasting Magic - Operate on mismatched shapes
matrix = np.array([[1, 2, 3], [4, 5, 6]])
scalar = 10
print(matrix + scalar)
# Output: [[11 12 13], [14 15 16]]
# Aggregation Functions - Statistical power in one line
values = np.array([1, 5, 3, 9, 7])
print(np.sum(values)) # Output: 25
print(np.mean(values)) # Output: 5.0
print(np.max(values)) # Output: 9
print(np.std(values)) # Output: 2.8284271247461903
# Boolean Masking - Filter data like a pro
temperatures = np.array([18, 25, 12, 30, 22])
hot_days = temperatures > 24
print(temperatures[hot_days]) # Output: [25 30]
# Random Number Generation - Simulate real-world data
print(np.random.rand(2, 2)) # Uniform distribution
print(np.random.randn(3)) # Normal distribution
print(np.random.randint(0, 10, (2, 3))) # Random integers
# Linear Algebra Essentials - Solve equations like a physicist
A = np.array([[3, 1], [1, 2]])
b = np.array([9, 8])
x = np.linalg.solve(A, b)
print(x) # Output: [2. 3.] (Solution to 3x+y=9 and x+2y=8)
# Matrix inverse and determinant
print(np.linalg.inv(A)) # Output: [[ 0.4 -0.2], [-0.2 0.6]]
print(np.linalg.det(A)) # Output: 5.0
# File Operations - Save/load your computational work
data = np.array([[1, 2], [3, 4]])
np.save('array.npy', data)
loaded = np.load('array.npy')
print(np.array_equal(data, loaded)) # Output: True
# Interview Power Move: Vectorization vs Loops
# 10x faster than native Python loops!
def square_sum(n):
arr = np.arange(n)
return np.sum(arr ** 2)
print(square_sum(5)) # Output: 30 (0Β²+1Β²+2Β²+3Β²+4Β²)
# Pro Tip: Memory-efficient data processing
# Process 1GB array without loading entire dataset
large_array = np.memmap('large_data.bin', dtype='float32', mode='r', shape=(1000000, 100))
print(large_array[0:5, 0:3]) # Process small slice
By: @DataScienceQ π
#Python #NumPy #DataScience #CodingInterview #MachineLearning #ScientificComputing #DataAnalysis #Programming #TechJobs #DeveloperTips
β€6
  π©π»βπ» These top-notch resources can take your #Python skills several levels higher. The best part is that they are all completely free!
Please open Telegram to view this post
    VIEW IN TELEGRAM
  β€11
  In Python, image processing unlocks powerful capabilities for computer vision, data augmentation, and automationβmaster these techniques to excel in ML engineering interviews and real-world applications! πΌ  
more explain: https://hackmd.io/@husseinsheikho/imageprocessing
#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
# PIL/Pillow Basics - The essential image library
from PIL import Image
# Open and display image
img = Image.open("input.jpg")
img.show()
# Convert formats
img.save("output.png")
img.convert("L").save("grayscale.jpg") # RGB to grayscale
# Basic transformations
img.rotate(90).save("rotated.jpg")
img.resize((300, 300)).save("resized.jpg")
img.transpose(Image.FLIP_LEFT_RIGHT).save("mirrored.jpg")
more explain: https://hackmd.io/@husseinsheikho/imageprocessing
#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
β€5π1
  π‘ Building a Simple Convolutional Neural Network (CNN)
Constructing a basic Convolutional Neural Network (CNN) is a fundamental step in deep learning for image processing. Using TensorFlow's Keras API, we can define a network with convolutional, pooling, and dense layers to classify images. This example sets up a simple CNN to recognize handwritten digits from the MNIST dataset.
Code explanation: This script defines a simple CNN using Keras. It loads and normalizes MNIST images. The
#Python #DeepLearning #CNN #Keras #TensorFlow
βββββββββββββββ
By: @CodeProgrammer β¨
Constructing a basic Convolutional Neural Network (CNN) is a fundamental step in deep learning for image processing. Using TensorFlow's Keras API, we can define a network with convolutional, pooling, and dense layers to classify images. This example sets up a simple CNN to recognize handwritten digits from the MNIST dataset.
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
import numpy as np
# 1. Load and preprocess the MNIST dataset
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# Reshape images for CNN: (batch_size, height, width, channels)
# MNIST images are 28x28 grayscale, so channels = 1
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255
# 2. Define the CNN architecture
model = models.Sequential()
# First Convolutional Block
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
# Second Convolutional Block
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# Flatten the 3D output to 1D for the Dense layers
model.add(layers.Flatten())
# Dense (fully connected) layers
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax')) # Output layer for 10 classes (digits 0-9)
# 3. Compile the model
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# Print a summary of the model layers
model.summary()
# 4. Train the model (uncomment to run training)
# print("\nTraining the model...")
# model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_split=0.1)
# 5. Evaluate the model (uncomment to run evaluation)
# print("\nEvaluating the model...")
# test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
# print(f"Test accuracy: {test_acc:.4f}")
Code explanation: This script defines a simple CNN using Keras. It loads and normalizes MNIST images. The
Sequential model adds Conv2D layers for feature extraction, MaxPooling2D for downsampling, a Flatten layer to transition to 1D, and Dense layers for classification. The model is then compiled with an optimizer, loss function, and metrics, and a summary of its architecture is printed. Training and evaluation steps are included as commented-out examples.#Python #DeepLearning #CNN #Keras #TensorFlow
βββββββββββββββ
By: @CodeProgrammer β¨
β€16
  Perfect for those who want to level up from
print('Hello') to advanced projects.1. 30-Days-Of-Python β a 30-day Python challenge covering the basics of the language.
2. Python Basics β simple and clear Python basics for beginners.
3. Learn Python β a topic-based guide with examples and code.
4. Python Guide β best practices, tools, and advanced topics.
5. Learn Python 3 β an easy-to-understand guide to Python 3 with practice.
6. Python Programming Exercises β 100+ Python exercises.
7. Coding Problems β algorithmic problems, perfect for interview prep.
8. Project-Based-Learning β learn Python through real projects.
9. Projects β ideas for practical projects and skill improvement.
10. 100-Days-Of-ML-Code β a step-by-step guide to Machine Learning in Python.
11. TheAlgorithms/Python β a huge collection of algorithms in Python.
12. Amazing-Python-Scripts β useful scripts from automation to advanced utilities.
13. Geekcomputers/Python β a collection of practical scripts: networking, files, automation.
14. Materials β code, exercises, and projects from Real Python.
15. Awesome Python β a top list of the best frameworks and libraries.
16. 30-Seconds-of-Python β short snippets for quick solutions.
17. Python Reference β life hacks, tutorials, and useful scripts.
#python #doc #github #soft
Please open Telegram to view this post
    VIEW IN TELEGRAM
  β€10π2π₯1π―1
  π€π§  Reflex: Build Full-Stack Web Apps in Pure Python β Fast, Flexible and Powerful
ποΈ 29 Oct 2025
π AI News & Trends
Building modern web applications has traditionally required mastering multiple languages and frameworks from JavaScript for the frontend to Python, Java or Node.js for the backend. For many developers, switching between different technologies can slow down productivity and increase complexity. Reflex eliminates that problem. It is an innovative open-source full-stack web framework that allows developers to ...
#Reflex #FullStack #WebDevelopment #Python #OpenSource #WebApps
ποΈ 29 Oct 2025
π AI News & Trends
Building modern web applications has traditionally required mastering multiple languages and frameworks from JavaScript for the frontend to Python, Java or Node.js for the backend. For many developers, switching between different technologies can slow down productivity and increase complexity. Reflex eliminates that problem. It is an innovative open-source full-stack web framework that allows developers to ...
#Reflex #FullStack #WebDevelopment #Python #OpenSource #WebApps
β€2
  π‘ NumPy Tip: Efficient Filtering with Boolean Masks
Avoid slow Python loops for filtering data. Instead, create a "mask" array of
Code explanation: A NumPy array
#Python #NumPy #DataScience #CodingTips #Programming
βββββββββββββββ
By: @CodeProgrammer β¨
Avoid slow Python loops for filtering data. Instead, create a "mask" array of
True/False values based on a condition. Applying this mask to your original array instantly selects only the elements where the mask is True, which is significantly faster.import numpy as np
# Create an array of data
data = np.array([10, 55, 8, 92, 43, 77, 15])
# Create a boolean mask for values greater than 50
high_values_mask = data > 50
# Use the mask to select elements
filtered_data = data[high_values_mask]
print(filtered_data)
# Output: [55 92 77]
Code explanation: A NumPy array
data is created. Then, a boolean array high_values_mask is generated, which is True for every element in data greater than 50. This mask is used as an index to efficiently extract and print only those matching elements from the original array.#Python #NumPy #DataScience #CodingTips #Programming
βββββββββββββββ
By: @CodeProgrammer β¨
β€2
  π‘ Python F-Strings Cheatsheet
F-strings (formatted string literals) provide a concise and powerful way to embed expressions inside string literals for formatting. Just prefix the string with an
1. Basic Variable and Expression Embedding
β’ Place variables or expressions directly inside curly braces
2. Number Formatting
Control the appearance of numbers, such as padding with zeros or setting decimal precision.
β’
β’
3. Alignment and Padding
Align text within a specified width, which is useful for creating tables or neatly formatted output.
β’ Use
4. Date and Time Formatting
Directly format
β’ Use a colon
#Python #Programming #CodingTips #FStrings #PythonTips
βββββββββββββββ
By: @CodeProgrammer β¨
F-strings (formatted string literals) provide a concise and powerful way to embed expressions inside string literals for formatting. Just prefix the string with an
f or F.1. Basic Variable and Expression Embedding
name = "Alice"
quantity = 5
print(f"Hello, {name}. You have {quantity * 2} items in your cart.")
# Output: Hello, Alice. You have 10 items in your cart.
β’ Place variables or expressions directly inside curly braces
{}. Python evaluates the expression and inserts the result into the string.2. Number Formatting
Control the appearance of numbers, such as padding with zeros or setting decimal precision.
pi_value = 3.14159
order_id = 42
print(f"Pi: {pi_value:.2f}")
print(f"Order ID: {order_id:04d}")
# Output:
# Pi: 3.14
# Order ID: 0042
β’
:.2f formats the float to have exactly two decimal places.β’
:04d formats the integer to be at least 4 digits long, padding with leading zeros if necessary.3. Alignment and Padding
Align text within a specified width, which is useful for creating tables or neatly formatted output.
item = "Docs"
print(f"|{item:<10}|") # Left-aligned
print(f"|{item:^10}|") # Center-aligned
print(f"|{item:>10}|") # Right-aligned
# Output:
# |Docs |
# | Docs |
# | Docs|
β’ Use
< for left, ^ for center, and > for right alignment, followed by the total width.4. Date and Time Formatting
Directly format
datetime objects within an f-string.from datetime import datetime
now = datetime.now()
print(f"Current time: {now:%Y-%m-%d %H:%M}")
# Output: Current time: 2023-10-27 14:30
β’ Use a colon
: followed by standard strftime formatting codes to display dates and times as you wish.#Python #Programming #CodingTips #FStrings #PythonTips
βββββββββββββββ
By: @CodeProgrammer β¨
β€3π1
  π‘ Keras: Building Neural Networks Simply
Keras is a high-level deep learning API, now part of TensorFlow, designed for fast and easy experimentation. This guide covers the fundamental workflow: defining, compiling, training, and using a neural network model.
β’ Model Definition:
β’
β’
β’ Compilation:
β’
β’
β’
β’ Training: The
β’
β’
β’
β’ Prediction:
β’ For a classification model with a softmax output, this returns an array of probabilities for each class.
β’
#Keras #TensorFlow #DeepLearning #MachineLearning #Python
βββββββββββββββ
By: @CodeProgrammer β¨
  Keras is a high-level deep learning API, now part of TensorFlow, designed for fast and easy experimentation. This guide covers the fundamental workflow: defining, compiling, training, and using a neural network model.
from tensorflow import keras
from tensorflow.keras import layers
# Define a Sequential model
model = keras.Sequential([
# Input layer with 64 neurons, expecting flat input data
layers.Dense(64, activation="relu", input_shape=(784,)),
# A hidden layer with 32 neurons
layers.Dense(32, activation="relu"),
# Output layer with 10 neurons for 10-class classification
layers.Dense(10, activation="softmax")
])
model.summary()
β’ Model Definition:
keras.Sequential creates a simple, layer-by-layer model.β’
layers.Dense is a standard fully-connected layer. The first layer must specify the input_shape.β’
activation functions like "relu" introduce non-linearity, while "softmax" is used on the output layer for multi-class classification to produce probabilities.# (Continuing from the previous step)
model.compile(
optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
print("Model compiled successfully.")
β’ Compilation:
.compile() configures the model for training.β’
optimizer is the algorithm used to update the model's weights (e.g., 'adam' is a popular choice).β’
loss is the function the model tries to minimize during training. sparse_categorical_crossentropy is common for integer-based classification labels.β’
metrics are used to monitor the training and testing steps. Here, we track accuracy.import numpy as np
# Create dummy training data
x_train = np.random.random((1000, 784))
y_train = np.random.randint(10, size=(1000,))
# Train the model
history = model.fit(
x_train,
y_train,
epochs=5,
batch_size=32,
verbose=0 # Hides the progress bar for a cleaner output
)
print(f"Training complete. Final accuracy: {history.history['accuracy'][-1]:.4f}")
# Output (will vary):
# Training complete. Final accuracy: 0.4570
β’ Training: The
.fit() method trains the model on your data.β’
x_train and y_train are your input features and target labels.β’
epochs defines how many times the model will see the entire dataset.β’
batch_size is the number of samples processed before the model is updated.# Create a single dummy sample to test
x_test = np.random.random((1, 784))
# Get the model's prediction
predictions = model.predict(x_test)
predicted_class = np.argmax(predictions[0])
print(f"Predicted class: {predicted_class}")
print(f"Confidence scores: {predictions[0].round(2)}")
# Output (will vary):
# Predicted class: 3
# Confidence scores: [0.09 0.1 0.1 0.12 0.1 0.09 0.11 0.1 0.09 0.1 ]
β’ Prediction:
.predict() is used to make predictions on new, unseen data.β’ For a classification model with a softmax output, this returns an array of probabilities for each class.
β’
np.argmax() is used to find the index (the class) with the highest probability score.#Keras #TensorFlow #DeepLearning #MachineLearning #Python
βββββββββββββββ
By: @CodeProgrammer β¨
