Keras Cheat Sheet: Neural Networks in Python
#keras #cheatsheet #python #library #programming #guide
https://t.iss.one/CodeProgrammer
#keras #cheatsheet #python #library #programming #guide
https://t.iss.one/CodeProgrammer
π10β€5
This media is not supported in your browser
VIEW IN TELEGRAM
π Cheat sheets for data science and machine learning
Link: https://sites.google.com/view/datascience-cheat-sheets
Link: https://sites.google.com/view/datascience-cheat-sheets
#DataScience #MachineLearning #CheatSheet #stats #analytics #ML #IA #AI #programming #code #rstats #python #deeplearning #DL #CNN
https://t.iss.one/CodeProgrammerβ
Please open Telegram to view this post
VIEW IN TELEGRAM
π19β€11
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
π10πΎ5π1
Deep Learning with Keras :: Cheat sheet
#DataScience #MachineLearning #CheatSheet #stats #analytics #ML #IA #AI #programming #code #rstats #python #deeplearning #DL #CNN #Keras #R
https://t.iss.one/CodeProgrammerβ
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
π13πΎ2π1
Top_100_Machine_Learning_Interview_Questions_Answers_Cheatshee.pdf
5.8 MB
Top 100 Machine Learning Interview Questions & Answers Cheatsheet
#DataScience #MachineLearning #CheatSheet #stats #analytics #ML #IA #AI #programming #code #rstats #python #deeplearning #DL #CNN #Keras #Rο»Ώ
https://t.iss.one/CodeProgrammerβ
Please open Telegram to view this post
VIEW IN TELEGRAM
π―14π7π₯1π1
Python Pandas Interview Questions Answers Cheatsheet.pdf
2.3 MB
Python Pandas Interview Questions & Answers Cheatsheet
https://t.iss.one/CodeProgrammer
#datascience #python #python3ofcode #programmers #coder #programming #developerlife #programminglanguage #womenwhocode #codinggirl #entrepreneurial #softwareengineer #100daysofcode #programmingisfun #developer #coding #software #programminglife #codinglife #code
https://t.iss.one/CodeProgrammer
π12
Machine Learning from Scratch by Danny Friedman
This book is for readers looking to learn new machine learning algorithms or understand algorithms at a deeper level. Specifically, it is intended for readers interested in seeing machine learning algorithms derived from start to finish. Seeing these derivations might help a reader previously unfamiliar with common algorithms understand how they work intuitively. Or, seeing these derivations might help a reader experienced in modeling understand how different algorithms create the models they do and the advantages and disadvantages of each one.
This book will be most helpful for those with practice in basic modeling. It does not review best practicesβsuch as feature engineering or balancing response variablesβor discuss in depth when certain models are more appropriate than others. Instead, it focuses on the elements of those models.
π Link: https://dafriedman97.github.io/mlbook/content/introduction.html
This book is for readers looking to learn new machine learning algorithms or understand algorithms at a deeper level. Specifically, it is intended for readers interested in seeing machine learning algorithms derived from start to finish. Seeing these derivations might help a reader previously unfamiliar with common algorithms understand how they work intuitively. Or, seeing these derivations might help a reader experienced in modeling understand how different algorithms create the models they do and the advantages and disadvantages of each one.
This book will be most helpful for those with practice in basic modeling. It does not review best practicesβsuch as feature engineering or balancing response variablesβor discuss in depth when certain models are more appropriate than others. Instead, it focuses on the elements of those models.
#DataScience #MachineLearning #CheatSheet #stats #analytics #ML #IA #AI #programming #code #rstats #python #deeplearning #DL #CNN #Keras #R
https://t.iss.one/CodeProgrammerβ
Please open Telegram to view this post
VIEW IN TELEGRAM
π12π₯3β€2
@Codeprogrammer Cheat Sheet Numpy.pdf
213.7 KB
This checklist covers the essentials of NumPy in one place, helping you:
- Create and initialize arrays
- Perform element-wise computations
- Stack and split arrays
- Apply linear algebra functions
- Efficiently index, slice, and manipulate arrays
β¦and much more!
Feel free to share if you found this useful, and let me know in the comments if I missed anything!
β‘οΈ BEST DATA SCIENCE CHANNELS ON TELEGRAM π
- Create and initialize arrays
- Perform element-wise computations
- Stack and split arrays
- Apply linear algebra functions
- Efficiently index, slice, and manipulate arrays
β¦and much more!
Feel free to share if you found this useful, and let me know in the comments if I missed anything!
#NumPy #Python #DataScience #MachineLearning #Automation #DeepLearning #Programming #Tech #DataAnalysis #SoftwareDevelopment #Coding #TechTips #PythonForDataScience
Please open Telegram to view this post
VIEW IN TELEGRAM
β€9π8
In Python, lists are versatile mutable sequences with built-in methods for adding, removing, searching, sorting, and moreβcovering all common scenarios like dynamic data manipulation, queues, or stacks. Below is a complete breakdown of all list methods, each with syntax, an example, and output, plus key built-in functions for comprehensive use.
π Adding Elements
β¦ append(x): Adds a single element to the end.
β¦ extend(iterable): Adds all elements from an iterable to the end.
β¦ insert(i, x): Inserts x at index i (shifts elements right).
π Removing Elements
β¦ remove(x): Removes the first occurrence of x (raises ValueError if not found).
β¦ pop(i=-1): Removes and returns the element at index i (default: last).
β¦ clear(): Removes all elements.
π Searching and Counting
β¦ count(x): Returns the number of occurrences of x.
β¦ index(x[, start[, end]]): Returns the lowest index of x in the slice (raises ValueError if not found).
π Ordering and Copying
β¦ sort(key=None, reverse=False): Sorts the list in place (ascending by default; stable sort).
β¦ reverse(): Reverses the elements in place.
β¦ copy(): Returns a shallow copy of the list.
π Built-in Functions for Lists (Common Cases)
β¦ len(lst): Returns the number of elements.
β¦ min(lst): Returns the smallest element (raises ValueError if empty).
β¦ max(lst): Returns the largest element.
β¦ sum(lst[, start=0]): Sums the elements (start adds an offset).
β¦ sorted(lst, key=None, reverse=False): Returns a new sorted list (non-destructive).
These cover all standard operations (O(1) for append/pop from end, O(n) for most others). Use slicing
#python #lists #datastructures #methods #examples #programming
β @DataScience4
π Adding Elements
β¦ append(x): Adds a single element to the end.
lst = [1, 2]
lst.append(3)
print(lst) # Output: [1, 2, 3]
β¦ extend(iterable): Adds all elements from an iterable to the end.
lst = [1, 2]
lst.extend([3, 4])
print(lst) # Output: [1, 2, 3, 4]
β¦ insert(i, x): Inserts x at index i (shifts elements right).
lst = [1, 3]
lst.insert(1, 2)
print(lst) # Output: [1, 2, 3]
π Removing Elements
β¦ remove(x): Removes the first occurrence of x (raises ValueError if not found).
lst = [1, 2, 2]
lst.remove(2)
print(lst) # Output: [1, 2]
β¦ pop(i=-1): Removes and returns the element at index i (default: last).
lst = [1, 2, 3]
item = lst.pop(1)
print(item, lst) # Output: 2 [1, 3]
β¦ clear(): Removes all elements.
lst = [1, 2, 3]
lst.clear()
print(lst) # Output: []
π Searching and Counting
β¦ count(x): Returns the number of occurrences of x.
lst = [1, 2, 2, 3]
print(lst.count(2)) # Output: 2
β¦ index(x[, start[, end]]): Returns the lowest index of x in the slice (raises ValueError if not found).
lst = [1, 2, 3, 2]
print(lst.index(2)) # Output: 1
π Ordering and Copying
β¦ sort(key=None, reverse=False): Sorts the list in place (ascending by default; stable sort).
lst = [3, 1, 2]
lst.sort()
print(lst) # Output: [1, 2, 3]
β¦ reverse(): Reverses the elements in place.
lst = [1, 2, 3]
lst.reverse()
print(lst) # Output: [3, 2, 1]
β¦ copy(): Returns a shallow copy of the list.
lst = [1, 2]
new_lst = lst.copy()
print(new_lst) # Output: [1, 2]
π Built-in Functions for Lists (Common Cases)
β¦ len(lst): Returns the number of elements.
lst = [1, 2, 3]
print(len(lst)) # Output: 3
β¦ min(lst): Returns the smallest element (raises ValueError if empty).
lst = [3, 1, 2]
print(min(lst)) # Output: 1
β¦ max(lst): Returns the largest element.
lst = [3, 1, 2]
print(max(lst)) # Output: 3
β¦ sum(lst[, start=0]): Sums the elements (start adds an offset).
lst = [1, 2, 3]
print(sum(lst)) # Output: 6
β¦ sorted(lst, key=None, reverse=False): Returns a new sorted list (non-destructive).
lst = [3, 1, 2]
print(sorted(lst)) # Output: [1, 2, 3]
These cover all standard operations (O(1) for append/pop from end, O(n) for most others). Use slicing
lst[start:end:step] for advanced extraction, like lst[1:3] outputs ``.#python #lists #datastructures #methods #examples #programming
Please open Telegram to view this post
VIEW IN TELEGRAM
β€14π7π2
Forwarded from Python Data Science Jobs & Interviews
In Python, NumPy is the cornerstone of scientific computing, offering high-performance multidimensional arrays and tools for working with themβcritical for data science interviews and real-world applications! π
By: @DataScienceQ π
#Python #NumPy #DataScience #CodingInterview #MachineLearning #ScientificComputing #DataAnalysis #Programming #TechJobs #DeveloperTips
import numpy as np
# Array Creation - The foundation of NumPy
arr = np.array([1, 2, 3])
zeros = np.zeros((2, 3)) # 2x3 matrix of zeros
ones = np.ones((2, 2), dtype=int) # Integer matrix
arange = np.arange(0, 10, 2) # [0 2 4 6 8]
linspace = np.linspace(0, 1, 5) # [0. 0.25 0.5 0.75 1. ]
print(linspace)
# Array Attributes - Master your data's structure
matrix = np.array([[1, 2, 3], [4, 5, 6]])
print(matrix.shape) # Output: (2, 3)
print(matrix.ndim) # Output: 2
print(matrix.dtype) # Output: int64
print(matrix.size) # Output: 6
# Indexing & Slicing - Precision data access
data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(data[1, 2]) # Output: 6 (row 1, col 2)
print(data[0:2, 1:3]) # Output: [[2 3], [5 6]]
print(data[:, -1]) # Output: [3 6 9] (last column)
# Reshaping Arrays - Transform dimensions effortlessly
flat = np.arange(6)
reshaped = flat.reshape(2, 3)
raveled = reshaped.ravel()
print(reshaped)
# Output: [[0 1 2], [3 4 5]]
print(raveled) # Output: [0 1 2 3 4 5]
# Stacking Arrays - Combine datasets vertically/horizontally
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
print(np.vstack((a, b))) # Vertical stack
# Output: [[1 2 3], [4 5 6]]
print(np.hstack((a, b))) # Horizontal stack
# Output: [1 2 3 4 5 6]
# Mathematical Operations - Vectorized calculations
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])
print(x + y) # Output: [5 7 9]
print(x * 2) # Output: [2 4 6]
print(np.dot(x, y)) # Output: 32 (1*4 + 2*5 + 3*6)
# Broadcasting Magic - Operate on mismatched shapes
matrix = np.array([[1, 2, 3], [4, 5, 6]])
scalar = 10
print(matrix + scalar)
# Output: [[11 12 13], [14 15 16]]
# Aggregation Functions - Statistical power in one line
values = np.array([1, 5, 3, 9, 7])
print(np.sum(values)) # Output: 25
print(np.mean(values)) # Output: 5.0
print(np.max(values)) # Output: 9
print(np.std(values)) # Output: 2.8284271247461903
# Boolean Masking - Filter data like a pro
temperatures = np.array([18, 25, 12, 30, 22])
hot_days = temperatures > 24
print(temperatures[hot_days]) # Output: [25 30]
# Random Number Generation - Simulate real-world data
print(np.random.rand(2, 2)) # Uniform distribution
print(np.random.randn(3)) # Normal distribution
print(np.random.randint(0, 10, (2, 3))) # Random integers
# Linear Algebra Essentials - Solve equations like a physicist
A = np.array([[3, 1], [1, 2]])
b = np.array([9, 8])
x = np.linalg.solve(A, b)
print(x) # Output: [2. 3.] (Solution to 3x+y=9 and x+2y=8)
# Matrix inverse and determinant
print(np.linalg.inv(A)) # Output: [[ 0.4 -0.2], [-0.2 0.6]]
print(np.linalg.det(A)) # Output: 5.0
# File Operations - Save/load your computational work
data = np.array([[1, 2], [3, 4]])
np.save('array.npy', data)
loaded = np.load('array.npy')
print(np.array_equal(data, loaded)) # Output: True
# Interview Power Move: Vectorization vs Loops
# 10x faster than native Python loops!
def square_sum(n):
arr = np.arange(n)
return np.sum(arr ** 2)
print(square_sum(5)) # Output: 30 (0Β²+1Β²+2Β²+3Β²+4Β²)
# Pro Tip: Memory-efficient data processing
# Process 1GB array without loading entire dataset
large_array = np.memmap('large_data.bin', dtype='float32', mode='r', shape=(1000000, 100))
print(large_array[0:5, 0:3]) # Process small slice
By: @DataScienceQ π
#Python #NumPy #DataScience #CodingInterview #MachineLearning #ScientificComputing #DataAnalysis #Programming #TechJobs #DeveloperTips
β€6
In Python, image processing unlocks powerful capabilities for computer vision, data augmentation, and automationβmaster these techniques to excel in ML engineering interviews and real-world applications! πΌ
more explain: https://hackmd.io/@husseinsheikho/imageprocessing
#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
# PIL/Pillow Basics - The essential image library
from PIL import Image
# Open and display image
img = Image.open("input.jpg")
img.show()
# Convert formats
img.save("output.png")
img.convert("L").save("grayscale.jpg") # RGB to grayscale
# Basic transformations
img.rotate(90).save("rotated.jpg")
img.resize((300, 300)).save("resized.jpg")
img.transpose(Image.FLIP_LEFT_RIGHT).save("mirrored.jpg")
more explain: https://hackmd.io/@husseinsheikho/imageprocessing
#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
β€5π1
π‘ NumPy Tip: Efficient Filtering with Boolean Masks
Avoid slow Python loops for filtering data. Instead, create a "mask" array of
Code explanation: A NumPy array
#Python #NumPy #DataScience #CodingTips #Programming
βββββββββββββββ
By: @CodeProgrammer β¨
Avoid slow Python loops for filtering data. Instead, create a "mask" array of
True/False values based on a condition. Applying this mask to your original array instantly selects only the elements where the mask is True, which is significantly faster.import numpy as np
# Create an array of data
data = np.array([10, 55, 8, 92, 43, 77, 15])
# Create a boolean mask for values greater than 50
high_values_mask = data > 50
# Use the mask to select elements
filtered_data = data[high_values_mask]
print(filtered_data)
# Output: [55 92 77]
Code explanation: A NumPy array
data is created. Then, a boolean array high_values_mask is generated, which is True for every element in data greater than 50. This mask is used as an index to efficiently extract and print only those matching elements from the original array.#Python #NumPy #DataScience #CodingTips #Programming
βββββββββββββββ
By: @CodeProgrammer β¨
β€2
π‘ Python F-Strings Cheatsheet
F-strings (formatted string literals) provide a concise and powerful way to embed expressions inside string literals for formatting. Just prefix the string with an
1. Basic Variable and Expression Embedding
β’ Place variables or expressions directly inside curly braces
2. Number Formatting
Control the appearance of numbers, such as padding with zeros or setting decimal precision.
β’
β’
3. Alignment and Padding
Align text within a specified width, which is useful for creating tables or neatly formatted output.
β’ Use
4. Date and Time Formatting
Directly format
β’ Use a colon
#Python #Programming #CodingTips #FStrings #PythonTips
βββββββββββββββ
By: @CodeProgrammer β¨
F-strings (formatted string literals) provide a concise and powerful way to embed expressions inside string literals for formatting. Just prefix the string with an
f or F.1. Basic Variable and Expression Embedding
name = "Alice"
quantity = 5
print(f"Hello, {name}. You have {quantity * 2} items in your cart.")
# Output: Hello, Alice. You have 10 items in your cart.
β’ Place variables or expressions directly inside curly braces
{}. Python evaluates the expression and inserts the result into the string.2. Number Formatting
Control the appearance of numbers, such as padding with zeros or setting decimal precision.
pi_value = 3.14159
order_id = 42
print(f"Pi: {pi_value:.2f}")
print(f"Order ID: {order_id:04d}")
# Output:
# Pi: 3.14
# Order ID: 0042
β’
:.2f formats the float to have exactly two decimal places.β’
:04d formats the integer to be at least 4 digits long, padding with leading zeros if necessary.3. Alignment and Padding
Align text within a specified width, which is useful for creating tables or neatly formatted output.
item = "Docs"
print(f"|{item:<10}|") # Left-aligned
print(f"|{item:^10}|") # Center-aligned
print(f"|{item:>10}|") # Right-aligned
# Output:
# |Docs |
# | Docs |
# | Docs|
β’ Use
< for left, ^ for center, and > for right alignment, followed by the total width.4. Date and Time Formatting
Directly format
datetime objects within an f-string.from datetime import datetime
now = datetime.now()
print(f"Current time: {now:%Y-%m-%d %H:%M}")
# Output: Current time: 2023-10-27 14:30
β’ Use a colon
: followed by standard strftime formatting codes to display dates and times as you wish.#Python #Programming #CodingTips #FStrings #PythonTips
βββββββββββββββ
By: @CodeProgrammer β¨
β€3π1
π‘ {{Python Exam}}
Python dictionaries are a fundamental data structure used to store data as key-value pairs. They are mutable (can be changed), dynamic, and since Python 3.7, they maintain the order of insertion. Keys must be unique and of an immutable type (like strings or numbers), while values can be of any type.
1. Creating and Accessing Dictionaries
β’ A dictionary is created using curly braces
β’
β’
β’
2. Modifying a Dictionary
β’ A new key-value pair is added using simple assignment
β’ The value of an existing key is updated by assigning a new value to it.
β’ The
3. Looping Through Dictionaries
β’
β’
β’
#Python #DataStructures #Dictionaries #Programming #PythonBasics
βββββββββββββββ
By: @CodeProgrammer β¨
Python dictionaries are a fundamental data structure used to store data as key-value pairs. They are mutable (can be changed), dynamic, and since Python 3.7, they maintain the order of insertion. Keys must be unique and of an immutable type (like strings or numbers), while values can be of any type.
1. Creating and Accessing Dictionaries
# Creating a dictionary
student = {
"name": "Alex",
"age": 21,
"courses": ["Math", "CompSci"]
}
# Accessing values
print(f"Name: {student['name']}")
print(f"Age: {student.get('age')}")
# Safe access for a non-existent key
print(f"Major: {student.get('major', 'Not specified')}")
# --- Sample Output ---
# Name: Alex
# Age: 21
# Major: Not specified
β’ A dictionary is created using curly braces
{} with key: value pairs.β’
student['name'] accesses the value using its key. This will raise a KeyError if the key doesn't exist.β’
student.get('age') is a safer way to access a value, returning None if the key is not found.β’
.get() can also take a second argument as a default value to return if the key is missing.2. Modifying a Dictionary
user_profile = {
"username": "coder_01",
"level": 5
}
# Add a new key-value pair
user_profile["email"] = "[email protected]"
print(f"After adding: {user_profile}")
# Update an existing value
user_profile["level"] = 6
print(f"After updating: {user_profile}")
# Remove a key-value pair
del user_profile["email"]
print(f"After deleting: {user_profile}")
# --- Sample Output ---
# After adding: {'username': 'coder_01', 'level': 5, 'email': '[email protected]'}
# After updating: {'username': 'coder_01', 'level': 6, 'email': '[email protected]'}
# After deleting: {'username': 'coder_01', 'level': 6}β’ A new key-value pair is added using simple assignment
dict[new_key] = new_value.β’ The value of an existing key is updated by assigning a new value to it.
β’ The
del keyword completely removes a key-value pair from the dictionary.3. Looping Through Dictionaries
inventory = {
"apples": 430,
"bananas": 312,
"oranges": 525
}
# Loop through keys
print("--- Keys ---")
for item in inventory.keys():
print(item)
# Loop through values
print("\n--- Values ---")
for quantity in inventory.values():
print(quantity)
# Loop through key-value pairs
print("\n--- Items ---")
for item, quantity in inventory.items():
print(f"{item}: {quantity}")
# --- Sample Output ---
# --- Keys ---
# apples
# bananas
# oranges
#
# --- Values ---
# 430
# 312
# 525
#
# --- Items ---
# apples: 430
# bananas: 312
# oranges: 525β’
.keys() returns a view object of all keys, which can be looped over.β’
.values() returns a view object of all values.β’
.items() returns a view object of key-value tuple pairs, allowing you to easily access both in each loop iteration.#Python #DataStructures #Dictionaries #Programming #PythonBasics
βββββββββββββββ
By: @CodeProgrammer β¨
β€4π1