Python | Machine Learning | Coding | R
66.5K subscribers
1.21K photos
84 videos
151 files
876 links
Help and ads: @hussein_sheikho

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

List of our channels:
https://t.iss.one/addlist/8_rRW2scgfRhOTc0

https://telega.io/?r=nikapsOH
Download Telegram
منشور علمي عن مكتبة #NumPy المفيدة في مجال #Data_Science وبعض الامثلة لتوابعها مع الشرح.

للمزيد قم بدعوة اصدقاءك للافادة والاستفادة: @CodeProgrammer
Title: Create #HTML profiling reports from #Pandas DataFrame objects using #Pandas_Profiling

#مكتبة_علمية مهمة ومفيدة للباحثين والمختصين بمجال #data_science و #الذكاء_الاصطناعي هذه المكتبة هي #pandas_profiling لإنشاء تقرير من البيانات مع امكانية حفظ التقرير بصيغة #HTML

كامل التفاصيل عن المكتبة تجدها هنا 👇
https://pypi.org/project/pandas-profiling/

🔴 انضم لقناة الباحثين البرمجية:
@DataScience_Books

🟢 انضم لمجتمع بايثون العربي:
@PythonArab

🟡 شارك القناة للآخرين:
@CodeProgrammer
Understanding Probability Distributions for Machine Learning with Python

In machine learning, probability distributions play a fundamental role for various reasons: modeling uncertainty of information and #data, applying optimization processes with stochastic settings, and performing inference processes, to name a few. Therefore, understanding the role and uses of probability distributions in machine learning is essential for designing robust machine learning models, choosing the right #algorithms, and interpreting outputs of a probabilistic nature, especially when building #models with #machinelearning-friendly programming languages like #Python.

This article unveils key #probability distributions relevant to machine learning, explores their applications in different machine learning tasks, and provides practical Python implementations to help practitioners apply these concepts effectively. A basic knowledge of the most common probability distributions is recommended to make the most of this reading.

Read Free: https://machinelearningmastery.com/understanding-probability-distributions-machine-learning-python/

https://t.iss.one/CodeProgrammer 🖥
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10
Please open Telegram to view this post
VIEW IN TELEGRAM
16👍1
💠 The Best Tool for Extracting Data from PDF Files!

👩🏻‍💻 Usually, PDF files like financial reports, scientific articles, or data analyses are full of tables, formulas, and complex texts.

⬅️ Most tools only extract texts and destroy the data structure, causing important information to be lost.

But the tool Docling uses artificial intelligence to preserve all those structures (text, tables, formulas) exactly as they are in the file. Then it converts that data into a structured format. Meaning AI models can work on them.

The interesting point is that with just three lines of Python code, you can convert any PDF into searchable data!

🥵 Docling
🔎 Article
📄 Documentation
🐱 GitHub-Repos

🌐 #Data_Science #DataScience
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍1