Machine Learning with Python
68K subscribers
1.27K photos
94 videos
158 files
924 links
Learn Machine Learning with hands-on Python tutorials, real-world code examples, and clear explanations for researchers and developers.
Download Telegram
🐼 20 of the most used Pandas + PDF functions

πŸ‘¨πŸ»β€πŸ’» The first time I used Pandas, I was supposed to quickly clean and organize a raw and complex dataset with the help of Pandas functions. Using the groupby function, I was able to categorize the data and get in-depth analysis of customer behavior. Best of all, it was when I used loc and iloc that I could easily filter the data.

βœ”οΈ Since then I decided to prepare a list of the most used Pandas functions that I use on a daily basis. Now this list is ready! In the following, I will introduce 20 of the best and most used Pandas functions:



πŸ³οΈβ€πŸŒˆ read_csv(): Fast data upload from CSV files

πŸ³οΈβ€πŸŒˆ head(): look at the first five rows of the database to start..

πŸ³οΈβ€πŸŒˆ info(): Checking data structure such as data type and empty values.

πŸ³οΈβ€πŸŒˆ describe(): Generate descriptive statistics for numeric columns.

πŸ³οΈβ€πŸŒˆ loc[ ]: accesses rows and columns by label or condition.

πŸ³οΈβ€πŸŒˆ iloc[ ]: Access data by row number.

πŸ³οΈβ€πŸŒˆ merge(): Merge dataframes with common columns.

πŸ³οΈβ€πŸŒˆ groupby(): Grouping for easier analysis.

πŸ³οΈβ€πŸŒˆ pivot_table(): Summarize data in pivot table format.

πŸ³οΈβ€πŸŒˆ to_csv(): Save data as a CSV file.

πŸ³οΈβ€πŸŒˆ pd.concat(): Concatenate multiple dataframes in rows or columns.

πŸ³οΈβ€πŸŒˆ pd.melt(): Convert wide format data to long format.

πŸ³οΈβ€πŸŒˆ pd.pivot_table(): Create a pivot table with multiple levels.

πŸ³οΈβ€πŸŒˆ pd.cut(): Split the data into specific intervals.

πŸ³οΈβ€πŸŒˆ pd.qcut(): Sort data by percentage.

πŸ³οΈβ€πŸŒˆ pd.merge(): Merge data in database style for advanced linking.

πŸ³οΈβ€πŸŒˆ DataFrame.apply(): Apply a custom function to the data.

πŸ³οΈβ€πŸŒˆ DataFrame.groupby(): Analyze grouped data.

πŸ³οΈβ€πŸŒˆ DataFrame.drop_duplicates(): Drop duplicate rows.

πŸ³οΈβ€πŸŒˆ DataFrame.to_excel(): Save data directly to Excel file.


β”Œ 🐼 Pandas Functions
β””
πŸ“„ PDF

#MachineLearning #DeepLearning #BigData #Datascience #ML #Pandas #DataVisualization #ArtificialInteligence #SoftwareEngineering #GenAI #deeplearning #ChatGPT #OpenAI #python #AI #keras #SQL #Statistics #LLMs #AIagents

https://t.iss.one/codeprogrammer ⭐️
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘26❀2
In Python, image processing unlocks powerful capabilities for computer vision, data augmentation, and automationβ€”master these techniques to excel in ML engineering interviews and real-world applications! πŸ–Ό 

# PIL/Pillow Basics - The essential image library
from PIL import Image

# Open and display image
img = Image.open("input.jpg")
img.show()

# Convert formats
img.save("output.png")
img.convert("L").save("grayscale.jpg")  # RGB to grayscale

# Basic transformations
img.rotate(90).save("rotated.jpg")
img.resize((300, 300)).save("resized.jpg")
img.transpose(Image.FLIP_LEFT_RIGHT).save("mirrored.jpg")


more explain: https://hackmd.io/@husseinsheikho/imageprocessing

#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
❀5πŸ‘1