Forwarded from Sonora.Dev
🛠 حل مشکل Double Booking در سیستمهای رزرو
تمام پلتفرمهای رزرو مدرن با چالش Double Booking روبرو هستند: وقتی دو یا چند کاربر بهطور همزمان تلاش میکنند یک منبع محدود را رزرو کنند.
این مشکل، یک race condition است که میتواند اعتماد کاربر را نابود کند و برای سیستمهای پرترافیک، بحرانی است.
1️⃣ Pessimistic Locking
مکانیزم: قفل روی رکورد دیتابیس (SELECT ... FOR UPDATE)
مزایا: تضمین Consistency، جلوگیری از race condition
معایب: Throughput محدود، Deadlock Risk، مقیاسپذیری پایین
مناسب برای: Low-traffic / کمرقابت (مثل Web Check-in هواپیما)
2️⃣ Optimistic Locking
مکانیزم: بدون قفل، با استفاده از Versioning
مزایا: عملکرد خواندن بالا، افزایش concurrency
معایب: Conflict و Retry در High Contention، افزایش load روی DB
مناسب برای: Moderate traffic و منابع کمرقابت (رزرو هتل، رستوران)
3️⃣ In-Memory Distributed Locking
مکانیزم: Lock توزیعشده در Redis / In-Memory Cache
مزایا: کاهش فشار روی دیتابیس، High Concurrency، Low Latency
معایب: پیچیدگی زیرساخت، مدیریت crash و expiration، ریسک Lock ناتمام
مناسب برای: Popular events با 1K–10K RPS
4️⃣ Virtual Waiting Queue
مکانیزم: Async Queue + Backpressure + FIFO
مزایا:
محافظت از دیتابیس و cache در برابر surge
بهبود تجربه کاربری و fairness
مقیاسپذیری بسیار بالا (High Throughput)
معایب: پیچیدگی عملیاتی، نیاز به SSE یا WebSocket برای اطلاعرسانی
مناسب برای: Ultra High Traffic events (کنسرتها، فیلمهای بلاکباستر)
✅ جمعبندی فنی
هیچ راهحل واحدی برای همه سناریوها وجود ندارد
انتخاب معماری به الگوی ترافیک، سطح رقابت و محدودیت منابع وابسته است
سیستمهای High-Traffic باید Lock-free + Async + Fair Queue داشته باشند تا Tail Latency و double booking کنترل شود
Monitoring، Retry Policies و Backpressure، اجزای کلیدی در طراحی سیستم رزرو مقیاسپذیر هستند
#SystemDesign #DistributedSystems #Scalability #Concurrency #BackendArchitecture #HighTraffic #BookingSystems #Microservices #Queueing
تمام پلتفرمهای رزرو مدرن با چالش Double Booking روبرو هستند: وقتی دو یا چند کاربر بهطور همزمان تلاش میکنند یک منبع محدود را رزرو کنند.
این مشکل، یک race condition است که میتواند اعتماد کاربر را نابود کند و برای سیستمهای پرترافیک، بحرانی است.
1️⃣ Pessimistic Locking
مکانیزم: قفل روی رکورد دیتابیس (SELECT ... FOR UPDATE)
مزایا: تضمین Consistency، جلوگیری از race condition
معایب: Throughput محدود، Deadlock Risk، مقیاسپذیری پایین
مناسب برای: Low-traffic / کمرقابت (مثل Web Check-in هواپیما)
2️⃣ Optimistic Locking
مکانیزم: بدون قفل، با استفاده از Versioning
مزایا: عملکرد خواندن بالا، افزایش concurrency
معایب: Conflict و Retry در High Contention، افزایش load روی DB
مناسب برای: Moderate traffic و منابع کمرقابت (رزرو هتل، رستوران)
3️⃣ In-Memory Distributed Locking
مکانیزم: Lock توزیعشده در Redis / In-Memory Cache
مزایا: کاهش فشار روی دیتابیس، High Concurrency، Low Latency
معایب: پیچیدگی زیرساخت، مدیریت crash و expiration، ریسک Lock ناتمام
مناسب برای: Popular events با 1K–10K RPS
4️⃣ Virtual Waiting Queue
مکانیزم: Async Queue + Backpressure + FIFO
مزایا:
محافظت از دیتابیس و cache در برابر surge
بهبود تجربه کاربری و fairness
مقیاسپذیری بسیار بالا (High Throughput)
معایب: پیچیدگی عملیاتی، نیاز به SSE یا WebSocket برای اطلاعرسانی
مناسب برای: Ultra High Traffic events (کنسرتها، فیلمهای بلاکباستر)
✅ جمعبندی فنی
هیچ راهحل واحدی برای همه سناریوها وجود ندارد
انتخاب معماری به الگوی ترافیک، سطح رقابت و محدودیت منابع وابسته است
سیستمهای High-Traffic باید Lock-free + Async + Fair Queue داشته باشند تا Tail Latency و double booking کنترل شود
Monitoring، Retry Policies و Backpressure، اجزای کلیدی در طراحی سیستم رزرو مقیاسپذیر هستند
#SystemDesign #DistributedSystems #Scalability #Concurrency #BackendArchitecture #HighTraffic #BookingSystems #Microservices #Queueing