C# Geeks (.NET)
334 subscribers
128 photos
1 video
98 links
Download Telegram
📖 سری آموزشی کتاب C# 12 in a Nutshell

📜 قراردادهای کدنویسی در #C: راهنمای کامل اینترفیس‌ها (Interfaces)

چطور می‌تونیم برای کلاس‌هامون یه "قرارداد" تعریف کنیم و بگیم "هر کلاسی که می‌خواد با من کار کنه، باید این قابلیت‌ها رو داشته باشه"؟

ابزار اصلی ما برای این کار در دنیای شیءگرایی، اینترفیس (Interface) هست. اینترفیس‌ها ستون فقرات معماری‌های تمیز، انعطاف‌پذیر و تست‌پذیر هستن.

1️⃣ اینترفیس چیست؟ یک قرارداد، بدون پیاده‌سازی

اینترفیس فقط رفتار (Behavior) رو تعریف می‌کنه، نه وضعیت (State). یعنی فقط امضای متدها و پراپرتی‌ها رو داره، نه فیلدهای داده و نه بدنه پیاده‌سازی برای اعضاش.

تفاوت‌های کلیدی با کلاس:

🔹 فقط توابع (متد، پراپرتی، ایونت، ایندکسر) را تعریف می‌کند، نه فیلدها.

🔹 اعضایش به صورت پیش‌فرض public و abstract هستند.

🔹 یک کلاس می‌تواند چندین اینترفیس را پیاده‌سازی کند (برخلاف وراثت از کلاس که فقط یکیه).

مثال (اینترفیس IEnumerator):
public interface IEnumerator
{
bool MoveNext();
object Current { get; }
void Reset();
}


2️⃣ پیاده‌سازی اینترفیس: امضای قرارداد

وقتی یه کلاس، اینترفیسی رو پیاده‌سازی می‌کنه، قول میده که برای تمام اعضای اون اینترفیس، یک پیاده‌سازی public ارائه بده.
internal class Countdown : IEnumerator
{
int count = 11;
public bool MoveNext() => count-- > 0;
public object Current => count;
public void Reset() { throw new NotSupportedException(); }
}

حالا می‌تونید یک نمونه از Countdown رو در متغیری از نوع IEnumerator بریزید:
IEnumerator e = new Countdown();
while (e.MoveNext())
{
Console.Write(e.Current + " "); // 10 9 8 7 6 5 4 3 2 1 0
}


3️⃣ جادوی پیاده‌سازی صریح (Explicit Implementation) 🎭

حالا اگه یه کلاس، دو تا اینترفیس رو پیاده‌سازی کنه که متدهایی با اسم یکسان ولی امضای متفاوت دارن، چی میشه؟ یا اگه بخوایم یه متد از اینترفیس رو از دید عمومی کلاس مخفی کنیم؟

اینجا پای پیاده‌سازی صریح (Explicit Implementation) به میدون باز میشه. در این حالت، شما اسم اینترفیس رو قبل از اسم متد میارید.

مثال (حل تداخل):
interface I1 { void Foo(); }
interface I2 { int Foo(); }
public class Widget : I1, I2
{
public void Foo() // پیاده‌سازی پیش‌فرض برای I1
{
Console.WriteLine("Widget's implementation of I1.Foo");
}

// پیاده‌سازی صریح برای حل تداخل با I1.Foo
int I2.Foo()
{
Console.WriteLine("Widget's implementation of I2.Foo");
return 42;
}
}


نکته حیاتی: ⚠️ متدی که به صورت صریح پیاده‌سازی شده، دیگه به صورت عمومی در دسترس نیست. برای صدا زدنش، باید اول آبجکت رو به اون اینترفیس خاص کست کنید:
Widget w = new Widget();
w.Foo(); // I1.Foo صدا زده میشه
((I1)w).Foo(); // I1.Foo صدا زده میشه
((I2)w).Foo(); // I2.Foo صدا زده میشه


🤔 حرف حساب و تجربه شما

اینترفیس‌ها، اساس طراحی‌های ماژولار، تست‌پذیر و مبتنی بر اصول SOLID هستن.

🔖 هشتگ‌ها:
#CSharp #DotNet #OOP #Interface #CleanCode
📖 سری آموزشی کتاب C# 12 in a Nutshell
🧩 وراثت و اینترفیس‌ها در #C: بازپیاده‌سازی و الگوهای حرفه‌ای

تو پست‌ قبلی، وراثت و اینترفیس‌ها رو جداگونه بررسی کردیم. اما وقتی این دو تا با هم ترکیب میشن، دنیایی از نکات ظریف و الگوهای پیشرفته به وجود میاد.

امروز می‌خوایم یاد بگیریم چطور یه عضو اینترفیس رو در سلسله‌مراتب وراثت به درستی override کنیم.

1️⃣ روش استاندارد: virtual و override

به صورت پیش‌فرض، وقتی یه عضو اینترفیس رو پیاده‌سازی می‌کنید، اون sealed (مهر و موم شده) هست. برای اینکه به کلاس‌های فرزند اجازه override کردنش رو بدید، باید اون رو صراحتاً virtual مشخص کنید. این کار به شما اجازه میده از قدرت کامل چندریختی (Polymorphism) استفاده کنید.
public interface IUndoable { void Undo(); }
public class TextBox : IUndoable
{
public virtual void Undo() => Console.WriteLine("TextBox.Undo");
}

public class RichTextBox : TextBox
{
public override void Undo() => Console.WriteLine("RichTextBox.Undo");
}
// --- نتایج ---
RichTextBox r = new RichTextBox();
r.Undo(); // RichTextBox.Undo
((IUndoable)r).Undo(); // RichTextBox.Undo
((TextBox)r).Undo(); // RichTextBox.Undo (رفتار یکپارچه و درست)


2️⃣ تکنیک خطرناک: بازپیاده‌سازی
(Re-implementation) ⚠️

حالا فرض کنید کلاس پدر، متد رو virtual نکرده. یه راه برای "override" کردنش، بازپیاده‌سازی اینترفیس در کلاس فرزنده. این کار، پیاده‌سازی رو فقط وقتی که آبجکت از طریق خود اینترفیس صدا زده بشه، "هایجک" می‌کنه.

تله‌ی بزرگ: ☠️ اگه پیاده‌سازی در کلاس پدر به صورت ضمنی (public) باشه، این الگو باعث رفتار متناقض و خطرناک میشه!
public class TextBox : IUndoable
{
// این متد virtual نیست!
public void Undo() => Console.WriteLine("TextBox.Undo");
}
public class RichTextBox : TextBox, IUndoable // بازپیاده‌سازی اینترفیس
{
// اینجا new هم می‌تونستیم بذاریم
public void Undo() => Console.WriteLine("RichTextBox.Undo");
}

// --- نتایج متناقض و خطرناک ---
RichTextBox r = new RichTextBox();
r.Undo(); // RichTextBox.Undo
((IUndoable)r).Undo(); // RichTextBox.Undo (هایجک شد)
((TextBox)r).Undo(); // TextBox.Undo (فاجعه! رفتار چندریختی شکست)


3️⃣ الگوهای حرفه‌ای (جایگزین‌های بهتر)

بازپیاده‌سازی معمولاً یه راه حل ضعیف و نشانه‌ی طراحی بده. دو الگوی خیلی بهتر برای طراحی کلاس‌های توسعه‌پذیر وجود داره:

الگوی اول: اگه پیاده‌سازی ضمنیه، همیشه virtual ـش کنید (همون روش شماره ۱).

الگوی دوم (برای پیاده‌سازی صریح): پیاده‌سازی صریح (explicit) اینترفیس رو به یک متد protected virtual وصل کنید. این الگو، قدرت کامل رو به کلاس‌های فرزند میده تا رفتار رو به صورت امن override کنن.
public class TextBox : IUndoable
{
// پیاده‌سازی صریح، کار را به یک متد مجازی و محافظت‌شده می‌سپارد
void IUndoable.Undo() => Undo();

protected virtual void Undo() => Console.WriteLine("TextBox.Undo");
}
public class RichTextBox : TextBox
{
protected override void Undo() => Console.WriteLine("RichTextBox.Undo");
}


🤔 حرف حساب و تجربه شما

این الگوها، تفاوت بین یه کتابخونه قابل اعتماد و یه کتابخونه شکننده رو رقم می‌زنن. طراحی برای توسعه‌پذیری، نشانه یک معمار نرم‌افزار حرفه‌ایه.

🔖 هشتگ‌ها:
#CSharp #DotNet #OOP #Interface #Inheritance
📖 سری آموزشی کتاب C# 12 in a Nutshell

🏛 کلاس در برابر اینترفیس: کدام را و چه زمانی انتخاب کنیم؟

یکی از اساسی‌ترین سوالات در طراحی شیءگرا اینه: کی باید از یه class و وراثت استفاده کنیم و کی باید بریم سراغ interface؟

این فقط یه انتخاب سینتکسی نیست، یه تصمیم مهم معماریه. بیاید با یه قانون ساده و یه مثال عالی، این موضوع رو برای همیشه روشن کنیم.

1️⃣ قانون طلایی: پیاده‌سازی مشترک در برابر رفتار مشترک ⚖️

به عنوان یک قانون کلی و کاربردی:

از class و وراثت استفاده کن:
وقتی تایپ‌های شما به صورت طبیعی، پیاده‌سازی مشترکی (shared implementation) دارند. یعنی کدهای مشترکی بینشون هست که می‌خواید از تکرارش جلوگیری کنید.

از interface استفاده کن:
وقتی تایپ‌های شما رفتار مشترکی (shared behavior) دارند، ولی هر کدوم پیاده‌سازی مستقل (independent implementation) و متفاوتی از اون رفتار رو ارائه میدن.

2️⃣ مثال عملی: دنیای حیوانات 🦅

فرض کنید می‌خوایم موجودات مختلف رو مدل‌سازی کنیم.

مشکل (استفاده فقط از کلاس): 👎
یه "عقاب" هم "پرنده" است، هم "موجود پرنده" و هم "گوشتخوار". چون #C وراثت چندگانه از کلاس‌ها رو پشتیبانی نمی‌کنه، کد زیر کامپایل نمیشه!
abstract class Animal {}
abstract class Bird : Animal {}
abstract class FlyingCreature : Animal {}
abstract class Carnivore : Animal {}
// خطای کامپایل! یک کلاس نمی‌تونه از چند کلاس ارث‌بری کنه
class Eagle : Bird, FlyingCreature, Carnivore {}

راه حل (ترکیب کلاس و اینترفیس): 👍
حالا قانون طلایی رو به کار می‌بریم. "پرنده" بودن احتمالاً یه سری پیاده‌سازی و ویژگی مشترک داره، پس Bird یه class باقی می‌مونه. اما "پرواز کردن" یا "گوشتخوار بودن"، رفتارهایی هستن که موجودات مختلف (مثل حشره و پرنده) به شکل‌های کاملاً متفاوتی انجام میدن. پس این‌ها بهترین کاندیدا برای اینترفیس هستن!
// اینترفیس‌ها فقط "رفتار" رو تعریف می‌کنن
interface IFlyingCreature { }
interface ICarnivore { }
abstract class Animal {}
// کلاس‌ها "پیاده‌سازی" مشترک رو ارائه میدن
abstract class Bird : Animal {}

// حالا درسته!
// عقاب از کلاس Bird ارث می‌بره و دو اینترفیس رو پیاده‌سازی می‌کنه
class Eagle : Bird, IFlyingCreature, ICarnivore {}


🤔 حرف حساب و تجربه شما

این مثال نشون میده که چطور با انتخاب درست بین کلاس و اینترفیس، می‌تونید ساختارهای پیچیده و در عین حال تمیز و انعطاف‌پذیری طراحی کنید.

🔖 هشتگ‌ها:
#CSharp #DotNet #OOP #SoftwareArchitecture #Interface #CleanCode
📖 سری آموزشی کتاب C# 12 in a Nutshell
🚀 انقلاب اینترفیس‌ها در #C مدرن: Default و Static Members

تو پست قبلی، یاد گرفتیم که کی باید از اینترفیس استفاده کنیم. اما داستان اینترفیس‌ها به تعریف چند متد ختم نمیشه! در نسخه‌های مدرن #C، اینترفیس‌ها به قابلیت‌های فوق‌العاده قدرتمندی مجهز شدن که قواعد بازی رو عوض می‌کنن.

امروز با این ابرقدرت‌ها آشنا میشیم.

1️⃣ Default Interface Members (C# 8):
ارتقاء بدون شکستن کد!


تصور کنید یه کتابخونه نوشتید و هزاران نفر دارن از اینترفیس ILogger شما استفاده می‌کنن. حالا اگه بخواید یه متد جدید به این اینترفیس اضافه کنید، کد تمام اون هزار نفر می‌شکنه!

Default Interface Members
این مشکل رو حل می‌کنه. شما می‌تونید یه متد جدید رو با پیاده‌سازی پیش‌فرض به اینترفیس اضافه کنید. این یعنی کلاس‌هایی که از اینترفیس شما استفاده می‌کنن، مجبور نیستن فوراً این متد جدید رو پیاده‌سازی کنن.

نکته کلیدی: ⚠️ این پیاده‌سازی‌های پیش‌فرض، به صورت صریح (explicit) هستن. یعنی اگه کلاسی اون متد رو پیاده‌سازی نکنه، برای صدا زدنش باید حتماً آبجکت رو به خود اینترفیس کست کنید.
public interface ILogger
{
// متد جدید با پیاده‌سازی پیش‌فرض
void Log(string text) => Console.WriteLine(text);
void LogError(Exception ex); // متد قدیمی بدون پیاده‌سازی
}

public class MyLogger : ILogger
{
// این کلاس فقط مجبوره LogError رو پیاده‌سازی کنه
public void LogError(Exception ex) { /* ... */ }
}

// --- نحوه استفاده ---
var logger = new MyLogger();
// logger.Log("hi"); // خطای زمان کامپایل!
((ILogger)logger).Log("hi"); // درسته!


2️⃣ Static Interface Members:
ابزارهای کمکی و پلی‌مورفیسم استاتیک ⚙️

بله، درست خوندید! اینترفیس‌ها در #C مدرن حتی می‌تونن اعضای استاتیک هم داشته باشن!

اعضای استاتیک غیرمجازی:
این اعضا (مثل فیلدها و متدهای استاتیک) برای تعریف مقادیر ثابت یا متدهای کمکی که به خود اینترفیس مرتبطن، عالین.
public interface ILogger
{
static string DefaultPrefix = "[INFO]: ";
void Log(string text) => Console.WriteLine(DefaultPrefix + text);
}


اعضای استاتیک مجازی/انتزاعی (از 11 #C):

این یکی از پیشرفته‌ترین قابلیت‌های #C هست و درهای دنیای جدیدی به اسم "چندریختی استاتیک" (Static Polymorphism) رو باز می‌کنه (مثلاً برای Generic Math). کلاس‌هایی که این اینترفیس رو پیاده‌سازی می‌کنن، باید اون عضو استاتیک رو هم پیاده‌سازی کنن.

3️⃣ نکته فنی: اینترفیس‌ها و Boxing

یه نکته پرفورمنسی مهم: وقتی شما یه struct (که Value Type هست) رو به یک اینترفیسی که پیاده‌سازی کرده کست می‌کنید، عمل Boxing اتفاق میفته و اون struct روی هیپ کپی میشه. این کار هزینه داره!
interface I { void Foo(); }
struct S : I { public void Foo() {} }
S s = new S();
s.Foo(); // بدون Boxing

I i = s; // Boxing اتفاق میفته!
i.Foo();


🤔 حرف حساب و تجربه شما

این قابلیت‌های مدرن، اینترفیس‌ها رو از یه قرارداد ساده به یه ابزار طراحی فوق‌العاده قدرتمند تبدیل کردن.

🔖 هشتگ‌ها:
#CSharp #DotNet #OOP #Interface #ModernCSharp
📖 سری آموزشی کتاب C# 12 in a Nutshell

🏷 راهنمای کامل Enum در #C: فراتر از چند اسم ثابت

وقتی می‌خواید یه مجموعه از مقادیر ثابت و مرتبط رو تعریف کنید (مثل جهت‌ها، رنگ‌ها، یا وضعیت‌ها)، اولین چیزی که باید به ذهنتون برسه Enum هست. Enumها به کد شما خوانایی و ایمنی نوع (Type Safety) میدن.

بیاید با تمام جزئیاتشون آشنا بشیم.

1️⃣ Enum چیست و چه ساختاری دارد؟

Enum
یک نوع داده ارزشی (Value Type) خاصه که به شما اجازه میده برای یک گروه از ثابت‌های عددی، اسم‌های معنادار تعریف کنید.
public enum BorderSide { Left, Right, Top, Bottom }

پشت صحنه: 🧐
هر عضو Enum یک مقدار عددی صحیح داره. به صورت پیش‌فرض:

نوع داده زیرین، int است.

مقادیر به ترتیب از 0 شروع میشن (Left=0, Right=1, Top=2, ...).

سفارشی‌سازی:
شما می‌تونید هم نوع داده زیرین و هم مقدار هر عضو رو خودتون مشخص کنید:
public enum BorderSide : byte // تغییر نوع به بایت
{
Left = 1,
Right, // مقدارش میشه 2 (یکی بیشتر از قبلی)
Top = 10,
Bottom // مقدارش میشه 11 (یکی بیشتر از قبلی)
}


2️⃣ تبدیل‌ها (Conversions)

شما می‌تونید یه Enum رو به مقدار عددی زیرینش و برعکس، به صورت صریح (explicit) کست کنید.
BorderSide side = BorderSide.Left; // side = 1
int i = (int)side; // i = 1
BorderSide side2 = (BorderSide)i; // side2 = BorderSide.Left


نکته جالب: 💡 لیترال عددی 0 تنها عددیه که برای انتساب به Enum نیاز به کست نداره.

3️⃣ تله بزرگ: Type-Safety و مقادیر نامعتبر! ⚠️

این مهم‌ترین نکته در مورد Enumهاست. با اینکه Enumها به ما Type Safety میدن، ولی به خاطر قابلیت کست شدن از عدد، یه متغیر Enum می‌تونه یه مقدار عددی نامعتبر (خارج از مقادیر تعریف شده) رو تو خودش نگه داره!
// این کد کامپایل و اجرا میشه، ولی b حاوی یک مقدار بی‌معنیه
BorderSide b = (BorderSide)12345;
Console.WriteLine(b); // خروجی عددی: 12345

این رفتار می‌تونه منطق if-else یا switch شما رو که انتظار مقادیر مشخصی رو دارن، کاملاً به هم بریزه.

4️⃣ راه حل: اعتبارسنجی با Enum.IsDefined

برای اینکه مطمئن بشید یه مقدار Enum معتبره، می‌تونید از متد استاتیک Enum.IsDefined استفاده کنید.
BorderSide side = (BorderSide)12345;
bool isValid = Enum.IsDefined(typeof(BorderSide), side);
Console.WriteLine(isValid); // خروجی: False


🤔 حرف حساب و تجربه شما

درک این جزئیات و تله‌های Enum، به شما کمک می‌کنه کدهای امن‌تر و قابل اعتمادتری بنویسید.

🔖 هشتگ‌ها:
#CSharp #DotNet #Enum #TypeSafety
📖 سری آموزشی کتاب C# 12 in a Nutshell

🚩 الگوی [Flags] Enum در #C: مدیریت چندین گزینه با بیت‌ها

تو پست قبلی با Enumهای استاندارد آشنا شدیم. اما اگه بخوایم یه متغیر بتونه ترکیبی از چند عضو Enum رو همزمان نگه داره چی؟ مثلاً دسترسی‌های کاربر (خواندن، نوشتن، حذف کردن).

اینجاست که الگوی قدرتمند [Flags] وارد میشه.

1️⃣ [Flags] چیست و کی بهش نیاز داریم؟

[Flags]
یه اتریبیوته که به کامپایلر و ابزارها میگه اعضای این Enum رو میشه با هم مثل پرچم‌های مختلف ترکیب کرد. این برای مدیریت گزینه‌ها (options)، دسترسی‌ها (permissions) یا هر وضعیتی که می‌تونه چند حالت همزمان داشته باشه، عالیه.

2️⃣ نحوه پیاده‌سازی: قدرت اعداد توان ۲

کلید اصلی این الگو، مقداردهی اعضا با توان‌های ۲ هست (1, 2, 4, 8, 16, ...). این کار باعث میشه هر عضو، نماینده یک بیت منحصر به فرد در یک عدد باشه و بتونیم اون‌ها رو بدون تداخل با هم ترکیب کنیم.
[Flags] // این اتریبیوت مهمه!
public enum BorderSides
{
None = 0,
Left = 1, // 2^0
Right = 2, // 2^1
Top = 4, // 2^2
Bottom = 8, // 2^3
// می‌تونیم ترکیبات رایج رو هم از قبل تعریف کنیم
LeftRight = Left | Right,
All = Left | Right | Top | Bottom
}


3️⃣ کار با Flags: عملگرهای بیتی

برای کار با Flags، از عملگرهای بیتی (Bitwise Operators) استفاده می‌کنیم:

🔹️ | (OR):
برای اضافه کردن یا ترکیب کردن چند فلگ.

🔹️ & (AND):
برای چک کردن اینکه آیا یه فلگ خاص در مجموعه وجود داره یا نه.

🔹️ ^ (XOR):
برای حذف کردن (toggle) یک فلگ اگه وجود داشته باشه.
// ترکیب کردن دو فلگ
BorderSides leftRight = BorderSides.Left | BorderSides.Right;
// چک کردن وجود یک فلگ
if ((leftRight & BorderSides.Left) != 0)
{
Console.WriteLine("Includes Left"); // اجرا میشه
}

// حذف یک فلگ
leftRight ^= BorderSides.Left; // حالا فقط Right باقی می‌مونه

// جادوی ToString() با اتریبیوت [Flags]
Console.WriteLine(leftRight.ToString()); // خروجی: Right

اگه اتریبیوت [Flags] رو نذارید، ToString() به جای اسم اعضا، مقدار عددی اون‌ها رو برمی‌گردونه.

🤔 حرف حساب و تجربه شما

الگوی [Flags] یکی از اون ترفندهای کلاسیک و قدرتمند #C هست که به شما اجازه میده با حجم کمی از داده، اطلاعات زیادی رو به صورت بهینه مدیریت کنید.

🔖 هشتگ‌ها:
#CSharp #DotNet #Enum #Flags #Bitwise
📖 سری آموزشی کتاب C# 12 in a Nutshell

📦 کلاس در کلاس: راهنمای کامل Nested Types در #C

تا حالا شده یه کلاسی بنویسید که اونقدر به یه کلاس دیگه وابسته باشه که انگار باید جزئی از اون باشه؟ یا بخواید یه کلاس کمکی بسازید که فقط و فقط توسط یک کلاس دیگه استفاده میشه؟

سی‌شارپ برای این سناریوها یه راه حل خیلی تمیز و قدرتمند داره: Nested Types (تایپ‌های تودرتو).

1️⃣ Nested Type چیست؟

یه Nested Type، یک تایپ (class, struct, enum, ...) است که داخل یک کلاس یا struct دیگه تعریف میشه. مثل یه جعبه‌ی کوچیک، داخل یه جعبه‌ی بزرگتر.
public class TopLevel
{
public class Nested { } // کلاس تودرتو
public enum Color { Red, Blue, Tan } // enum تودرتو
}

برای دسترسی به یک Nested Type از بیرون، باید اون رو با اسم کلاس بیرونی مشخص کنید:
TopLevel.Nested n = new TopLevel.Nested();
TopLevel.Color color = TopLevel.Color.Red;


2️⃣ ابرقدرت‌های Nested Types 🦸‍♂️

چرا باید از یه Nested Type استفاده کنیم؟ چون چند تا قدرت ویژه دارن که کلاس‌های معمولی ندارن:

دسترسی به اعضای private: 🔐

مهم‌ترین قدرتشون اینه که می‌تونن به اعضای private و protected کلاسی که داخلش هستن، دسترسی داشته باشن! این یعنی یه سطح کپسوله‌سازی فوق‌العاده.
public class TopLevel
{
private static int x = 10;
class Nested
{
// Nested به فیلد private کلاس TopLevel دسترسی داره!
static void Foo() => Console.WriteLine(TopLevel.x);
}
}


سطوح دسترسی بیشتر: 🛡

می‌تونن هر Access Modifierی داشته باشن (public, private, protected و...). این در حالیه که کلاس‌های معمولی فقط می‌تونن public یا internal باشن. پیش‌فرض دسترسی برای Nested Typeها، private هست.

3️⃣ قانون طلایی: کی از Nested Type استفاده کنیم؟ 🎯

این مهم‌ترین بخش ماجراست.

دلیل اشتباه: استفاده از Nested Type برای جلوگیری از شلوغ شدن namespace. برای این کار از namespace تودرتو استفاده کنید.

دلایل درست: فقط زمانی از Nested Type استفاده کنید که:

• کلاس داخلی شما به شدت به کلاس بیرونی وابسته است و به اعضای private اون نیاز مستقیم داره.

• می‌خواید با استفاده از Access Modifierها (مثل private یا protected)، اون کلاس رو از دنیای بیرون کاملاً مخفی کنید و به عنوان یه جزئیات پیاده‌سازی داخلی نگهش دارید.

🤔 حرف حساب و تجربه شما

Nested Types
یه ابزار قدرتمند برای کپسوله‌سازی پیشرفته هستن، به شرطی که به جا و درست ازشون استفاده بشه.

🔖 هشتگ‌ها:
#CSharp #DotNet #OOP #Encapsulation
📖 سری آموزشی کتاب C# 12 in a Nutshell

🧬 جادوی Generics در #C: نوشتن یک کد برای همه تایپ‌ها!

سی‌شارپ دو تا مکانیزم اصلی برای نوشتن کدهای قابل استفاده مجدد (reusable) داره: وراثت و جنریک‌ها. وراثت این کار رو با یک تایپ پایه انجام میده، ولی جنریک‌ها با یک "قالب" که شامل "نوع‌های جایگزین" (placeholder) هست، این کار رو می‌کنن.

امروز می‌خوایم ببینیم جنریک‌ها چی هستن و چرا به وجود اومدن.

1️⃣ مشکل چه بود؟ (چرا به جنریک‌ها نیاز داریم؟)

فرض کنید به یه ساختار داده مثل پشته (Stack) نیاز داریم. بدون جنریک‌ها، دو راه بد پیش روی ما بود:

راه حل اول: تکرار کد 👎

باید برای هر نوع داده‌ای که می‌خواستیم، یه کلاس جدا می‌نوشتیم (IntStack, StringStack, UserStack و...). این یعنی حجم وحشتناکی از کد تکراری.

راه حل دوم: استفاده از object 👎

می‌تونستیم یه ObjectStack بسازیم که هر نوعی رو قبول کنه (چون همه تایپ‌ها از object ارث می‌برن). اما این روش دو تا مشکل بزرگ داشت که تو پست قبلی دیدیم:

• عدم ایمنی نوع (Type Safety): شما می‌تونستید به اشتباه یه string رو تو پشته‌ای که برای int ساخته بودید، Push کنید و کامپایلر هیچ خطایی نمی‌گرفت!

• هزینه پرفورمنس Boxing/Unboxing : برای کار با Value Typeها (مثل int)، باید مدام هزینه کپی کردن داده روی Heap (Boxing) و برگردوندنش (Unboxing) رو پرداخت می‌کردیم.

2️⃣ جنریک‌ها (Generics): بهترین‌های هر دو دنیا

جنریک‌ها دقیقاً برای حل این مشکل به وجود اومدن. به ما اجازه میدن یه "قالب" کد بنویسیم که هم قابل استفاده مجدد باشه (مثل ObjectStack) و هم ایمنی نوع و پرفورمنس بالا داشته باشه (مثل IntStack).

شما یک نوع جنریک با یک پارامتر T می‌سازید. بعداً موقع استفاده، به جای T، نوع داده واقعی خودتون رو قرار میدید.
public class Stack<T> // T یک نوع جایگزین است
{
int position;
T[] data = new T[100]; // آرایه ما حالا از نوع T است
public void Push(T obj) => data[position++] = obj;
public T Pop() => data[--position];
}


3️⃣ مزایای بزرگ در عمل

حالا ببینیم این نسخه جنریک چطور مشکلات رو حل می‌کنه:
var stack = new Stack<int>();
stack.Push(5);
stack.Push(10);
// stack.Push("hello"); // خطای زمان کامپایل! کامپایلر به شما ایمنی نوع کامل میده.

int x = stack.Pop(); // بدون نیاز به کست. بدون هزینه Unboxing. (x is 10)
int y = stack.Pop(); // (y is 5)


🤔 حرف حساب و تجربه شما

جنریک‌ها یکی از قدرتمندترین قابلیت‌های #C هستن و اساس تمام کالکشن‌های مدرن دات‌نت (List<T>, Dictionary<TKey, TValue>) رو تشکیل میدن. تسلط بر اون‌ها برای نوشتن کدهای قابل استفاده مجدد، امن و بهینه، ضروریه.

🔖 هشتگ‌ها:
#CSharp #DotNet #OOP #Generics
📖 سری آموزشی کتاب C# 12 in a Nutshell

🧬 متدهای جنریک در #C: نوشتن الگوریتم‌های همه‌کاره

تو پست قبلی، با تایپ‌های جنریک مثل <Stack<T آشنا شدیم. اما قدرت جنریک‌ها به کلاس‌ها محدود نمیشه! ما می‌تونیم متدهایی بنویسیم که خودشون پارامترهای نوعی (<T>) داشته باشن.

به این‌ها متدهای جنریک (Generic Methods) میگن و به ما اجازه میدن الگوریتم‌های بنیادی رو به صورت کاملاً قابل استفاده مجدد و Type-Safe بنویسیم.

1️⃣ مثال کلاسیک: متد <Swap<T

فرض کنید می‌خوایم یه متد بنویسیم که محتوای دو تا متغیر رو با هم عوض کنه. بدون جنریک‌ها، باید برای int، string و هر نوع دیگه‌ای یه نسخه جدا می‌نوشتیم (تکرار کد!). اما با یه متد جنریک، این کار رو فقط یک بار و برای همه تایپ‌ها انجام میدیم:
static void Swap<T>(ref T a, ref T b)
{
T temp = a;
a = b;
b = temp;
}

2️⃣ جادوی استنتاج نوع (Type Inference)

بهترین بخش ماجرا اینه که در ۹۹٪ مواقع، شما نیازی ندارید که نوع T رو موقع صدا زدن متد مشخص کنید (<Swap<int). کامپایلر #C اونقدر هوشمنده که خودش از روی نوع آرگومان‌هایی که به متد پاس میدید، T رو تشخیص میده.
int x = 5;
int y = 10;
// نیازی به نوشتن Swap<int>(ref x, ref y) نیست!
Swap(ref x, ref y);
string s1 = "Hello";
string s2 = "World";
// کامپایلر خودش می‌فهمه T اینجا از نوع string هست
Swap(ref s1, ref s2);


3️⃣ قوانین و جزئیات مهم جنریک‌ها ⚖️

چه چیزهایی می‌توانند جنریک باشند؟
در #C، پارامترهای نوعی (<T>) فقط در تعریف کلاس‌ها، استراکت‌ها، اینترفیس‌ها، دلیگیت‌ها و متدها قابل استفاده هستن. اعضای دیگه مثل پراپرتی‌ها یا سازنده‌ها نمی‌تونن پارامتر نوعی جدیدی تعریف کنن، ولی می‌تونن از پارامتر نوعی که کلاسشون تعریف کرده، استفاده کنن.

🔹️ چندین پارامتر جنریک:
یک تایپ یا متد جنریک می‌تونه چند تا پارامتر نوعی داشته باشه:
// TKey و TValue دو پارامتر نوعی متفاوت هستن
class Dictionary<TKey, TValue> { /* ... */ }


🔹️ اورلودینگ بر اساس تعداد پارامترها:
شما می‌تونید اسم یک تایپ یا متد رو بر اساس تعداد پارامترهای جنریکش اورلود کنید. (به تعداد پارامترهای جنریک، "Arity" گفته میشه).
class A {}           // Arity = 0
class A<T> {} // Arity = 1
class A<T1, T2> {} // Arity = 2


🔹️ قرارداد نام‌گذاری:
طبق قرارداد، برای پارامترهای نوعی تک حرفی از T استفاده میشه. اگه پارامترهای بیشتری دارید، اون‌ها رو با اسم‌های توصیفی‌تر و با پیشوند T نام‌گذاری کنید (مثل TKey, TValue).

🤔 حرف حساب و تجربه شما

متدهای جنریک به شما اجازه میدن الگوریتم‌های بنیادی رو یک بار بنویسید و همه جا به صورت type-safe ازشون استفاده کنید، که این اساس نوشتن کدهای تمیز و قابل استفاده مجدده.

🔖 هشتگ‌ها:
#CSharp #DotNet #OOP #Generics
📖 سری آموزشی کتاب C# 12 in a Nutshell

⚙️ قدرت where: راهنمای کامل Generic Constraints در #C


تو پست قبلی با جنریک‌ها آشنا شدیم. اما پارامتر T به صورت پیش‌فرض یک "لوح سفید" هست و کامپایلر هیچ‌چیزی در موردش نمی‌دونه. چطور می‌تونیم به کامپایلر بگیم که T باید چه قابلیت‌هایی داشته باشه؟

با استفاده از قیدهای جنریک (Generic Constraints) و کلمه کلیدی where.

1️⃣ چرا به قیدها (Constraints) نیاز داریم؟

به صورت پیش‌فرض، شما می‌تونید هر نوعی رو جای T قرار بدید. قیدها این امکان رو محدود می‌کنن، اما هدف اصلی‌شون فعال کردن قابلیت‌های جدیده. وقتی شما یه قید میذارید، به کامپایلر میگید: "من قول میدم که T حتماً این قابلیت‌ها رو داره" و کامپایلر هم در عوض به شما اجازه میده از اون قابلیت‌ها استفاده کنید (مثلاً متدهای یک اینترفیس رو روی T صدا بزنید).

2️⃣ انواع قیدهای جنریک

این لیست کامل قیدهاییه که می‌تونید با where استفاده کنید:

🔹️ where T : base-class
(قید کلاس پایه: T باید از این کلاس ارث‌بری کند)

🔹️ where T : interface
(قید اینترفیس: T باید این اینترفیس را پیاده‌سازی کند)

🔹️ where T : class
(قید نوع ارجاعی: T باید یک کلاس باشد)

🔹️ where T : struct
(قید نوع مقداری: T باید یک struct باشد)

🔹️ where T : new()
(قید سازنده: T باید یک سازنده بدون پارامتر داشته باشد)

🔹️ where U : T
(قید نوع عریان: پارامتر جنریک U باید از T ارث‌بری کند)

3️⃣ مثال‌های کاربردی

قید اینترفیس (: <IComparable<T):
فرض کنید می‌خوایم یه متد Max بنویسیم. برای این کار، باید مطمئن باشیم که T قابلیت مقایسه شدن رو داره.
static T Max<T>(T a, T b) where T : IComparable<T>
{
// حالا که قید گذاشتیم، کامپایلر اجازه میده متد CompareTo رو صدا بزنیم
return a.CompareTo(b) > 0 ? a : b;
}
// استفاده:
int z = Max(5, 10); // 10


قید نوع مقداری (: struct):

این قید تضمین می‌کنه که T باید یک Value Type باشد. بهترین مثالش، خودِ System.Nullable<T> هست که فقط برای Value Typeها معنی داره.
struct Nullable<T> where T : struct { /* ... */ }


قید سازنده (: ()new):

این قید تضمین می‌کنه که T یک سازنده عمومی بدون پارامتر داره. این به ما اجازه میده که بتونیم با new T() ازش نمونه بسازیم.
static void Initialize<T>(T[] array) where T : new()
{
for (int i = 0; i < array.Length; i++)
array[i] = new T();
}


🤔 حرف حساب و تجربه شما

قیدهای جنریک، ابزار اصلی شما برای ساختن APIهای جنریک قدرتمند، امن و کارآمد هستن.

🔖 هشتگ‌ها:
#CSharp #DotNet #OOP #Generics