Какую версию Python взять, чтобы всё работало без лишних проблем?
С одной стороны, хочется более свежую: в 3.14 завезли free-threading и вообще много чего улучшили по производительности. Но не все библиотеки ещё подтянулись. Например, Numba ещё 3.14 не поддерживает.
Хороший совет — вооружитесь uv и последовательно пробуйте все версии начиная с самой свежей. Первая, которая заработает, и будет вашей. По сути самая свежая из тех, которую поддерживают все зависимости у вас в проекте.
Также полезно посмотреть на релизный цикл (на картинке к посту). Очевидно не стоит брать версии, которые уже не поддерживаются. Спускаться ниже 3.10 будет не самым безопасным вариантом. Ровно как и пробовать то, что ещё не выпущено официально — на 3.15 заглядываться рановато.
По состоянию на ноябрь 2025 версия 3.13 выглядит хорошей золотой серединой. Почти все уже успели добавить поддержку, а от ведущей 3.14 отставание всего на один шаг.
А какие версии вы используете у себя в проектах?
#обсуждение
@zen_of_python
С одной стороны, хочется более свежую: в 3.14 завезли free-threading и вообще много чего улучшили по производительности. Но не все библиотеки ещё подтянулись. Например, Numba ещё 3.14 не поддерживает.
Хороший совет — вооружитесь uv и последовательно пробуйте все версии начиная с самой свежей. Первая, которая заработает, и будет вашей. По сути самая свежая из тех, которую поддерживают все зависимости у вас в проекте.
Также полезно посмотреть на релизный цикл (на картинке к посту). Очевидно не стоит брать версии, которые уже не поддерживаются. Спускаться ниже 3.10 будет не самым безопасным вариантом. Ровно как и пробовать то, что ещё не выпущено официально — на 3.15 заглядываться рановато.
По состоянию на ноябрь 2025 версия 3.13 выглядит хорошей золотой серединой. Почти все уже успели добавить поддержку, а от ведущей 3.14 отставание всего на один шаг.
А какие версии вы используете у себя в проектах?
#обсуждение
@zen_of_python
❤4👻3
Свежий пет-проект от (видимо) скучающего на досуге питониста — терминальный Git‑клиент на чистом Python, вдохновлённый LazyGit; ставится через pip и работает без внешнего git CLI. Попробовать:
Что даёт: навигация по коммитам, просмотр diff, панель статусов файлов в стиле VSCode, ветко‑зависимая история и индикаторы «пушнуто/локально» без вызова системного git.
Зачем: когда в окружении нельзя ставить ничего кроме Python‑пакетов, нужен «чисто Python» инструмент для Git с удобной навигацией и минимумом интеграций.
Автор просит фидбек по недостающим функциям и удобству UI, так что можете отписаться в репозитории. Вам плюсик в карму, автор порадуется.
Проект, послуживший вдохновением: https://github.com/jesseduffield/lazygit
Ну и, конечно, кто-то написал аналог на Rust, чтобы было ультра-быстро, а скорее просто потому что может: https://github.com/gitui-org/gitui
Как вам такие поделки? Как минимум романтично же, консольные клиенты как будто пахнут старыми добрыми временами, вы не находите?
@zen_of_python
pip install pygitzen.Что даёт: навигация по коммитам, просмотр diff, панель статусов файлов в стиле VSCode, ветко‑зависимая история и индикаторы «пушнуто/локально» без вызова системного git.
Зачем: когда в окружении нельзя ставить ничего кроме Python‑пакетов, нужен «чисто Python» инструмент для Git с удобной навигацией и минимумом интеграций.
Автор просит фидбек по недостающим функциям и удобству UI, так что можете отписаться в репозитории. Вам плюсик в карму, автор порадуется.
Проект, послуживший вдохновением: https://github.com/jesseduffield/lazygit
Ну и, конечно, кто-то написал аналог на Rust, чтобы было ультра-быстро, а скорее просто потому что может: https://github.com/gitui-org/gitui
Как вам такие поделки? Как минимум романтично же, консольные клиенты как будто пахнут старыми добрыми временами, вы не находите?
@zen_of_python
🔥11❤2
Media is too big
VIEW IN TELEGRAM
Как провести проверку типов в 1,8 миллионах строчек Python-кода за секунду? Нил Митчел рассказывает как новый тайп-чекер Pyrefly достигает такой скорости (дубляж на русский).
Аннотации типов появились ещё в 2014 году и с тех пор стали значительно сложнее: дженерики, подтипы, flow types, field refinement и другие не всем даже известные слова. Pyrefly моделирует и проверяет эту сложную систему и делает это быстро.
В принципе тем же самым занимается uv ty, но у ребят из Astral немного другой подход: дать пользу программисту аккуратно, не ошибиться случайно в коде, который хоть и без типов, но теоретически может быть валидным. Можно сказать, что Pyrefly более агрессивный и стабильный, хотя оба проекта ещё в альфе.
Попробовать можно прям на сайте проекта: pyrefly.org/sandbox
Что ж, наконец-то кто-то сможет угнаться за скоростью написания вайб-кода и проверить хотя бы типы.
@zen_of_python
Аннотации типов появились ещё в 2014 году и с тех пор стали значительно сложнее: дженерики, подтипы, flow types, field refinement и другие не всем даже известные слова. Pyrefly моделирует и проверяет эту сложную систему и делает это быстро.
В принципе тем же самым занимается uv ty, но у ребят из Astral немного другой подход: дать пользу программисту аккуратно, не ошибиться случайно в коде, который хоть и без типов, но теоретически может быть валидным. Можно сказать, что Pyrefly более агрессивный и стабильный, хотя оба проекта ещё в альфе.
Попробовать можно прям на сайте проекта: pyrefly.org/sandbox
Что ж, наконец-то кто-то сможет угнаться за скоростью написания вайб-кода и проверить хотя бы типы.
@zen_of_python
❤1👍1
Совет управляющих Python одобрил два PEP — 798 про распаковку в comprehensions и 810 про явные ленивые импорты, оба целятся в Python 3.15.
PEP 798 добавляет возможность применять распаковку прямо в comprehensions и генераторах: можно использовать символы звездочки для объединения и слияния, например
PEP 810 вводит явный синтаксис ленивых импортов:
P.S. Кто такие эти ваши «совет управляющих»? После ухода Гвидо с роли BDFL в 2018 сообщество приняло модель управления PEP 8016 — стратегию языка и финальные решения по PEP принимает избираемый из core-разработчиков Совет из пяти человек. Этот Совет переизбирается после каждого мажорного релиза голосованием среди core-dev’ов и выступает финальным арбитром по спорным вопросам развития языка.
PEP 798 добавляет возможность применять распаковку прямо в comprehensions и генераторах: можно использовать символы звездочки для объединения и слияния, например
[*it for it in its] или {**d for d in dicts}. Приняли с оговоркой: и синхронные, и асинхронные генераторные выражения должны использовать явные циклы, без yield from, чтобы сохранить простой и единый стиль, ближе к поведению itertools.chain.from_iterable.PEP 810 вводит явный синтаксис ленивых импортов:
lazy import json и lazy from json import dumps, когда модуль реально загрузится только при первом обращении к имени — полезно для ускорения старта и экономии памяти. Совет уточнил детали: .pth не поддерживают ленивые импорты, появится sys.get_lazy_imports(), и будет зафиксирован приоритет между переменной окружения, флагом -X и вызовами sys.set_lazy_imports(), при этом стилистические правила сортировки оставят линтерам и форматтерам.P.S. Кто такие эти ваши «совет управляющих»? После ухода Гвидо с роли BDFL в 2018 сообщество приняло модель управления PEP 8016 — стратегию языка и финальные решения по PEP принимает избираемый из core-разработчиков Совет из пяти человек. Этот Совет переизбирается после каждого мажорного релиза голосованием среди core-dev’ов и выступает финальным арбитром по спорным вопросам развития языка.
🔥7❤4
В Python 3.14 появилось фишка, которая реально меняет дебаг live-процессов: безопасный внешний интерфейс отладки по PEP 768, который позволяет подключаться к уже запущенному питоновскому процессу по PID — без перезапуска и без ломания рантайма на ровном месте. В практическом виде это значит, что теперь можно сделать обычный attach встроенным pdb:
Главная фишка — все происходит в «безопасных точках» интерпретатора, без хака с инъекцией машинного кода через ptrace/LLDB и без риска словить краш, гонки за GIL или порчу памяти при сборке мусора. Интерфейс кооперируется с eval loop CPython и просто просит интерпретатор выполнить небольшой скрипт, когда это безопасно; под капотом для этого добавили пару полей в PyThreadState и используют существующий eval_breaker, поэтому накладных расходов в обычном режиме нет.
Для инструментов завезли
Если хотите детали и хороший разбор, у surister вышел пост после выступления Пабло Галиндо (соавтора PEP): там с примерами, почему старые подходы были хрупкими, и как новый протокол делает attach нормальным инструментом, а не рулеткой с падениями.
Ещё раз супер-кратко: теперь attach к живому Python — это стандартная возможность CPython 3.14, с нулевой ценой в рантайме и без трюков уровня «инжектим код в произвольной точке», что сильно упрощает жизнь при отладке долгоживущих сервисов и edge/IoT кейсов.
А вы знали, что так можно?
python -m pdb -p <PID>, залезть внутрь, посмотреть состояние, выполнить код — как будто запускал под отладчиком с самого начала.Главная фишка — все происходит в «безопасных точках» интерпретатора, без хака с инъекцией машинного кода через ptrace/LLDB и без риска словить краш, гонки за GIL или порчу памяти при сборке мусора. Интерфейс кооперируется с eval loop CPython и просто просит интерпретатор выполнить небольшой скрипт, когда это безопасно; под капотом для этого добавили пару полей в PyThreadState и используют существующий eval_breaker, поэтому накладных расходов в обычном режиме нет.
Для инструментов завезли
sys.remote_exec(pid, path_to_script): можно подложить .py-файл и он выполнится в целевом процессе при первой возможности, что удобно для быстрых диагностик: распечатать стек, проверить состояние, собрать метрики, даже если это прод и процесс нельзя трогать. Момент важный для продакшена и безопасности: механизм можно отключить через переменные/флаги (PYTHON_DISABLE_REMOTE_DEBUG, -X disable-remote-debug, сборка без поддержки), а любые вызовы проходят через audit hooks, так что всё прозрачно и контролируемо для админов.Если хотите детали и хороший разбор, у surister вышел пост после выступления Пабло Галиндо (соавтора PEP): там с примерами, почему старые подходы были хрупкими, и как новый протокол делает attach нормальным инструментом, а не рулеткой с падениями.
Ещё раз супер-кратко: теперь attach к живому Python — это стандартная возможность CPython 3.14, с нулевой ценой в рантайме и без трюков уровня «инжектим код в произвольной точке», что сильно упрощает жизнь при отладке долгоживущих сервисов и edge/IoT кейсов.
А вы знали, что так можно?
This media is not supported in your browser
VIEW IN TELEGRAM
🔥4