Zen of Python
20K subscribers
1.27K photos
177 videos
34 files
3.28K links
Полный Дзен Пайтона в одном канале

Разместить рекламу: @tproger_sales_bot

Правила общения: https://tprg.ru/rules

Другие каналы: @tproger_channels

Сайт: https://tprg.ru/site

Регистрация в перечне РКН: https://tprg.ru/xZOL
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
fastapi_mcp | Ваш самописный API как инструмент LLM

Если вы обладаете самописным API и хотите, чтобы LLM умела им пользоваться, то эта библиотека поможет. За несколько строк кода вы сможете выдать функционал своего проекта нейронкам вроде ChatGPT по эндпоинту https://app.base.url/mcp:


from fastapi import FastAPI
from fastapi_mcp import FastApiMCP

app = FastAPI()

mcp = FastApiMCP(app)

# Mount the MCP server directly to your FastAPI app
mcp.mount()


#инструмент
@zen_of_python
43
Вопросы подписчиков

Zen of Python поддерживает новоприбывших (и не только) в особой рубрике. Как это работает:

— Спрашивайте что угодно (в комментариях под этим постом), связанное с Python. Здесь нет плохих вопросов!
— Сообщество вас поддержит. Самые интересные вопросы мы разберём в отдельном посте;

#вопросы_новичков
@zen_of_python
Полезный мем: переменные или методы, имена которых начинаются с двойного подчёркивания (например, __x), автоматически «искажаются» интерпретатором путём добавления имени класса в начало. Это делается для обеспечения некоторой степени инкапсуляции и предотвращения конфликтов имён в классах-наследниках.

«Приватные» переменные с двойным одчёркиванием на самом деле претерпевают трансформацию имени (Name Mangling).

#кек #факт
@zen_of_python
7
8👍8🍓1
complexipy | Вычисляем когнитивную сложность вашего кода

Нетривиальный инструмент, позволяющий вычислить Cognitive Complexity («когнитивную сложность»). В контексте программирования это метрика, оценивающая насколько трудно человеку понять код — учитываются не только ветвления и циклы, как в Cyclomatic Complexity, но и структура, глубина вложенности, логические конструкции, операторы и прочие аспекты, создающие когнитивную нагрузку при чтении. Это важная метрика при рефакторинге проекта.

Тул интегрируется через CLI, GitHub Actions, pre-commit-hooks и позволяет анализировать функции, файлы и директории, указывая те, чей коэффициент сложности превышает определенный порог.

#инструмент
@zen_of_python
💔 — Если рефакторинг разбивает сердце
5🆒2
tyro | Ваша функция, вызываемая в CLI

tyro.cli() автоматически преобразует Python-функцию или класс с аннотациями типов в полнофункциональный интерфейс командной строки, без необходимости вручную прописывать парсинг аргументов:


@dataclass
class Config:
input_file: str
verbose: bool = False


Здесь tyro.cli(Config) создаёт полноценный CLI, где аргументы --input-file и --verbose будут автоматически сгенерированы, а при вызове в терминале доступна помощь (--help).

Утилита извлекает аннотации и doc-строки. Аргументы становятся типами, которыми оперируют IDE и анализаторы mypy, pyright: автодополнение, переход к определению, рефакторинг — всё работает «из коробки». Это даст возможность автокомплитить с Tab.

#инструмент
@zen_of_python
🔥321
Forwarded from Код найма
Прямой эфир с ментором по Python Сергеем Филичкиным

Забивайте слот в календаре:
📌 19 августа, 18:00 — Сергей Филичкин проведёт бесплатную открытую консультацию в «Коде найма».

Тему этого эфира помогли выбрать вы! Будем разбирать, «Как собирать офферы «про запас» и торговаться за лучшую цену». А вот более подробный план встречи:

🖇Как грамотно позиционировать себя на рынке, чтобы получить больше предложений.
🖇Психология успеха в переговорах: как уверенно говорить о деньгах.
🖇Тактика сбора офферов и ведения торгов.
🖇Лайфхаки по автоматизации поиска и переписки с рекрутерами.
🖇Блок Q&A с разбором ваших ситуаций.

💬 Оставляйте свои вопросы Сергею под этим постом — чтобы наш ментор дал развернутые и действительно рабочие советы!

Python-карьера в 2025 без воды: деньги, офферы, переговоры. Подписывайся.

ИП Филичкин Сергей Андреевич ИНН 183401586208, erid: 2W5zFJydiRE
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1🗿1
Вопрос подписчика: IDE + GPT

Задает @vberia:

«Какие IDE и какие GPT сейчас актуальны? Можно топ 3? Не хочется тестировать лишнего, но хочется протестить нужные)».

NB! Пожалуйста, будьте взаимовежливы. Однажды и вам помогут в этой рубрике.

#вопросы_подписчиков
@zen_of_python
👍1💅1
Где арендовать GPU в 2025: подборка GPU‑хостингов с адекватной ценой и SLA

В 2025 году аренда видеокарт в облаке становится всё более актуальной альтернативой покупке собственного оборудования. В обзоре представили подборку провайдеров, которые предлагают топовые видеокарты — от NVIDIA V100 и A40 до мощнейших H100 и A100 для создания кластеров до 8 GPU. Многие из них предоставляют фичу — поминутную / почасовую оплату (pay-as-you-go), что делает такое железо доступным физлицам. Например, на VK Cloud предлагаются GPU L4, Tesla V100 и A100 для задач от видеообработки до глубокого обучения, а Cloud.ru предлагает H100, A100, V100 и A40 с возможностью формирования мощных кластеров.

#факт
@zen_of_python
👍1🐳1
@pytest.mark.parametrize: Как параметризировать тесты

Тестирование кода может быть утомительным процессом. Когда у вас есть множество похожих тестовых случаев, написание отдельных функций для каждого часто приводит к дублированию кода. Именно здесь на помощь приходит функция @pytest.mark.parametrize.

Начнем с простого примера. У нас есть функция add_nums(), которая складывает числа из списка:


def add_nums(numbers):
return sum(numbers)


Без parametrize тесты могли бы выглядеть так:


def test_123():
assert add_nums([1, 2, 3]) == 6

def test_negatives():
assert add_nums([1, 2, -3]) == 0

def test_empty():
assert add_nums([]) == 0


Что не так с этим подходом? Дублирование кода: каждая тестовая функция повторяет одну и ту же структуру. Вместо написания трех отдельных функций, мы можем создать одну параметризованную функцию:


import pytest

@pytest.mark.parametrize(
"nums, expected_total",
[
([1, 2, 3], 6),
([1, 2, -3], 0),
([], 0),
]
)
def test_add_nums(nums, expected_total):
assert add_nums(nums) == expected_total


1. @pytest.mark.parametrize — это специальный декоратор pytest
2. Параметры "nums, expected_total" — имена параметров функции
3. Тестовые данные — список кортежей, где каждый содержит значения для одного теста

Pytest автоматически вызывает вашу функцию с каждым набором параметров:


# Первый вызов
test_add_nums([1, 2, 3], 6)

# Второй вызов
test_add_nums([1, 2, -3], 0)

# Третий вызов
test_add_nums([], 0)


Результат: 3 отдельных теста, каждый из которых может пройти или упасть.


Кастомные ID для тестов

По умолчанию pytest генерирует автоматические ID для тестов, но они могут быть не очень понятными. Вы можете задать свои:


@pytest.mark.parametrize(
"nums, expected_total",
[
([1, 2, 3], 6),
([1, 2, -3], 0),
([], 0),
],
ids=["positive_numbers", "mixed_numbers", "empty_list"]
)
def test_add_nums(nums, expected_total):
assert add_nums(nums) == expected_total


Теперь при запуске тестов вы увидите:

test_add_nums[positive_numbers] PASSED
test_add_nums[mixed_numbers] PASSED
test_add_nums[empty_list] PASSED



Вложенная параметризация

Можно комбинировать несколько параметризаций:


@pytest.mark.parametrize("x", [1, 2, 3])
@pytest.mark.parametrize("y", [10, 20])
def test_multiply(x, y):
assert x * y == x * y


Это создаст 6 тестов: (1,10), (1,20), (2,10), (2,20), (3,10), (3,20).

#основы
@zen_of_python
👍131🔥1
Forwarded from Типичный программист
Инструкция к Kubernetes, которую поймёт даже водитель Uber

Если ваша резиновая уточка уже освоила все популярные технологии, то пора искать новую жертву. Сможете рассказать о сложном так, чтобы вас понял даже далёкий от IT водитель такси?

Автор этого материала смог и поделился своим результатом. Если вы всё ещё не до конца понимаете кубер, то скорее читайте статью:

https://dev.to/therubberduckiee/explaining-kubernetes-to-my-uber-driver-4f60
👍4😭2👨‍💻1
Многофакторное сравнение пяти популярных вычислительных движков Big Data

На Tproger сравнили Spark, Presto/Trino, ClickHouse и StarRocks — с оценкой по таким критериям, как скорость, масштабируемость, кэширование, отказоустойчивость и поддержка SQL / Python.

Выделено три типа движков:
— универсальные (например, Spark, Flink, MapReduce), предназначенные для пакетных сложных вычислений; — интерактивные, для запросов (Presto, Trino) для моментального анализа ad hoc;
— аналитические, ориентированные на OLAP-аналитику с векторизацией.

Используется система скоринга Metascore, которая облегчит сравнение и принятие обоснованного решения.

#инструмент
@zen_of_python
1🌭1
Вопросы подписчиков

Zen of Python поддерживает новоприбывших (и не только) в особой рубрике. Как это работает:

— Спрашивайте что угодно (в комментариях под этим постом), связанное с Python. Здесь нет плохих вопросов!
— Сообщество вас поддержит. Самые интересные вопросы мы разберём в отдельном посте;

#вопросы_новичков
@zen_of_python
Мотивация зрелого разработчика
#кек
@zen_of_python
😁3🌚1
This media is not supported in your browser
VIEW IN TELEGRAM
Линейка в доме питониста никогда не покрывается пылью 🙂
#кек
@zen_of_python
Please open Telegram to view this post
VIEW IN TELEGRAM
🤷‍♂17👍8🗿4💊1
Forwarded from Нейроканал
This media is not supported in your browser
VIEW IN TELEGRAM
Получается нас уже заменили?

#постИИрония
😁12
This media is not supported in your browser
VIEW IN TELEGRAM
Omnara | Центр управления полетами для ваших ИИ-копайлотов

Платформа для мониторинга и управления ИИ-агентами (такими как Claude Code, Cursor и другими), которая позволяет отслеживать их работу в реальном времени и получать уведомления, когда агенты нуждаются в помощи. Инструмент работает как в веб-версии, так и в мобильном приложении. Также реализованы REST API, Python SDK и MCP (Model Context Protocol). Такой тул позволяет вам настроить своих AI-заместителей и больше времени проводить за нерутинными задачами.

Цена: бесплатно (но за токены придется платить)
Доступен в РФ: да
@zen_of_python
1🗿1
Паттерн Flyweight | как экономить память и избегать дублирования кода

Flyweight («вес мухи») — один из структурных паттернов, предназначенный для оптимизации расходования памяти. Суть — разделять состояния объектов на:

➡️ Внутреннее (intrinsic): общие, неизменяемые компоненты, которые можно разделять между объектами;
➡️ Внешнее (extrinsic) — уникальные, изменяемые данные, передаваемые в объект лишь в контексте его использования.

Это позволяет хранить меньше объектов при одинаковом поведении. Стоит задуматься об этом паттерне, если требуется создать множество объектов с частично общими данными.

Пример
Представь, что у нас лес в игре из 100К деревьев. У каждого дерева есть:

— Внутреннее состояние: текстура, цвет листвы, форма кроны, высота модели. Это разделяемые каждым деревом в лесу свойства;
— Внешнее состояние: координаты на карте, текущее состояние (здорово/повалено). Такое уникально для каждого дерева.

Если бы мы для каждого дерева хранили копию текстуры и модели, мы бы потратили гигабайты памяти. Flyweight избавляет от проблемы:


Наивный вариант (без Flyweight)


class Tree:
def __init__(self, texture, color, shape, x, y):
self.texture = texture
self.color = color
self.shape = shape
self.x = x
self.y = y

def draw(self):
print(f"Drawing {self.color} {self.shape} at ({self.x}, {self.y})")


# создаём 100.000 деревьев, каждое хранит одинаковую текстуру и форму
forest = [
Tree("oak_texture.png", "green", "oak", x, y)
for x, y in zip(range(1000), range(1000))
]


Каждый объект Tree хранит одинаковые данные (oak_texture.png, "oak", "green"), хотя это лишнее.


С Flyweight


# Общие характеристики
class TreeType:
def __init__(self, texture, color, shape):
self.texture = texture
self.color = color
self.shape = shape

def draw(self, x, y):
# внешние данные передаются параметром
print(f"Drawing {self.color} {self.shape} at ({x}, {y})")


# Фабрика для переиспользования типов деревьев
class TreeFactory:
_tree_types = {}

@classmethod
def get_tree_type(cls, texture, color, shape):
key = (texture, color, shape)
if key not in cls._tree_types:
cls._tree_types[key] = TreeType(texture, color, shape)
return cls._tree_types[key]


# Контекст: хранит только уникальные данные (extrinsic)
class Tree:
def __init__(self, x, y, tree_type):
self.x = x
self.y = y
self.tree_type = tree_type

def draw(self):
self.tree_type.draw(self.x, self.y)


# создаём 100ю000 деревьев, но реально разных TreeType всего 2-3
forest = []
for i in range(100000):
if i % 2 == 0:
tree_type = TreeFactory.get_tree_type("oak_texture.png", "green", "oak")
else:
tree_type = TreeFactory.get_tree_type("pine_texture.png", "darkgreen", "pine")
forest.append(Tree(i, i * 2, tree_type))

# Нарисуем первые пять
for tree in forest[:5]:
tree.draw()


⚡️ У нас 100 000 объектов Tree, но всего 2 объекта `TreeType` (oak и pine). Экономия памяти огромная: вместо хранения 100.000 текстур хранится только 2.


Недостатки паттерна

— Усложнение структуры кода;
— Возможны сложности с сопровождением, особенно при неправильном управлении extrinsic;
— Повышен риск связности — общие объекты могут влиять на многие части системы .

#основы
@zen_of_python
Please open Telegram to view this post
VIEW IN TELEGRAM
22🆒1