Используете ли вы трекеры времени для продуктивной работы? Если да, то какие? Сколько примерно вы потратили дней / месяцев / лет, чтобы их внедрить в свою жизнь? Чувствуете ли вы импакт от этого?
🍅 У части людей, например, внедрено для работы Pomodoro. Это когда ты бьешь рабочее время на короткие интервалы для работы и отдыха. Базовый вариант - это когда одна сессия выглядит следующим образом: 25 минут работаешь, 5 отдыхаешь. Требуется больше времени, чтобы быть в фокусе, хотя можно разбить на более длительные сессии. В этой статейке 70 минут работаешь, 20 минут отдыхаешь, 40 минут еще чил. Суммарно 10.5 часов на работу, 3.3 часов на отдых. Итог ~ 14 часов на сессии.
🧠 Я склоняюсь в сторону Deep Work - это когда у тебя рабочая сессия длится несколько часов. Фокусированно сидишь над задачей / задачами без отвлечения. На каком-то из часов начинаешь замечать, что делать достаточно. Главное - это подготовить рабочее место, предварительно отключив раздражители, приготовиться к сессии и плотно сидеть и работать, deep work... А еще важнее, на первых этапах, вырабатывая привычку - НЕ ВСТАВАТЬ (очевидно, по каким-то делам / встречкам это делать не получится, но сессию в календаре под это дело забить можно или стремиться к этому). Если брать 4 часа на сессию, а сессий 3, получается 12 часов на сессии.
📖 Дополнительные материальчики для чтения:
🔗 LINK 🔗
🔗 LINK 🔗
Если вам нравится формат таких постов, ставьте реакции, пишите комментарии
Если вам нравится формат таких постов, ставьте реакции, пишите комментарии
Please open Telegram to view this post
VIEW IN TELEGRAM
❤23🔥9 6🤣3
Дизайните эксперимент вы, значит, в компании, где есть люди, ответственные за валидацию экспериментов (либо вы сами), рассчитываете там какое-то MDE, получаете большое значение MDE из-за разных причин: маленький срез, тяжелые хвосты у распределения метрики и т.д. На берегу понимаете, что тест, скорее всего, не прокрасит метрику.
Вам приходит идея срезать выбросы и тут вы замечаете, что дисперсия уменьшается, но есть нюанс, на симуляциях A/A тестах вы получаете завышенную ошибку первого рода. Очень часто это может прослеживаться в направлении рекламы, среди пользователей в e-commerce.
Объединение теста и контроля с едиными квантилем для обеих групп позволяет снизить ошибку первого рода, она даже в пределах нормы находится, но с ошибкой второго рода - беда.
Почему?
Разные группы (в одной есть тритмент, в другой нет), мы по сути перемешиваем группы и ищем квантиль обеих групп.
Что можно с этим сделать?
1. Убрать выбросы на предпериоде, топ n пользователей по целевой метрике в тесте
2. Заменить значение выбросов на максимальное значение по квантилям. Пример: пользователь принесу сервису 100 рублей, 99% квантиль - 80. Пользователя мы не убираем, заменяем значением 80. Более подробно про это могу написать, проведем симуляции, посмотрим как ведут себя распределения и др.
Материалы:
Как улучшить ваши A/B-тесты: лайфхаки аналитиков Авито.
АБ тесты и подводные камни при их автоматизации
Хорошая статья на Medium, про попытки исключения различным образом выбросов
Это одна из многих проблем, которая есть при проведении экспериментов.
Please open Telegram to view this post
VIEW IN TELEGRAM
3❤20🐳10 7
predict_proba выдает на выходе вероятности отнесения к какому-либо классу. Мы решаем задачу с Propenity Score Matching, нам нужно в первой итерации (как бы сокращая размерность) для каждого объекта выборки определить вероятность отношения к тритменту (то есть определить 1 - пользователь совершил какое-то действие).
1. Сначала мы вычисляем линейную комбинацию векторов признаков и весов (с определенным байесом).
2. Результат подается в функцию активацию, например, классический вариант, это сигмоида (для бинарной классификации) и softmax (для многоклассовой классификации).
3. Определяем вероятности.
from sklearn.datasets import make_classification
from sklearn.linear_model import LogisticRegression
X, y = make_classification()
lr = LogisticRegression()
lr.fit(X, y)
z = np.dot(X, lr.coef_.reshape(-1, 1)) + lr.intercept_
model_predict = lr.predict_proba(X)[:5, 1]
naive = 1 / (1 + np.exp(-z)).flatten()[:5]
print(model_predict)
print(naive)
Дополнительные материалы:
1. How to Use Logistic Regression predict_proba Method in scikit-learn
2. CatBoost. Predict Proba
3. Predict_proba examples in MLflow - October 2024
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤21 2🐳1
Представим, вы работаете в продукте, в котором есть разработчики, дизайнеры, аналитики, продакт-менеджеры, UX-исследователи и др. (весьма большой продукт с точки зрения наполняемости по выполняемым задачам). У каждого сотрудника есть своя зона ответственности. Тут приходит кому-то в голову гениальная идея о том, что нужно сделать фичу / процесс / продукт, который способен взорвать рынок (по его мнению). Понятно, что аналитик в этом плане может привести какую-то оценку на основе своих компетенций или идей в общем.
Вы идете к кому-то из списка выше, договариваетесь, считаете, но тут возникает момент истины, что любые процессы стоят денег / времены для команды. То есть команда будет тратить время на разработку чего-то нового, жертвуя тем, что можно было сделать проще. Например, добавить один виджет / сделать что-то простое и увидеть инкремент на бизнес или посмотреть на исследования других компаний, в т.ч. конкурентов. Тут можно еще затронуть базово концепцию MVP (Minimal Valuable Product), но тут, скорее, вопрос приоритезации и то, что случайно есть риск зарубить хорошие жирные гипотезы (есть же декомпозиция, все дела...)
Помню довольное старое (5 лет назад вышло) видео Ильи Красинского по поводу юнит-экономики, про стоимость гипотез я запомнил оттуда (в целом, тут про юнит-экономику, но все же, будет полезно).
Было бы классно в моменте оценить количество пропущенных классных дорогих гипотез или количество плохих дешевых гипотез, посмотреть на Confusion Matrix, так сказать, как-то свести это к эквиваленту и понять, компания делает нормальный tradeoff или все-таки нет и нужно пересмотреть решение по принятию или отвержению гипотез.
ПОДДЕРЖАТЬ БУСТОМ
Please open Telegram to view this post
VIEW IN TELEGRAM
7❤14 6👍2 2
Ждём сообщения от заказчиков, смежников, только так. Никаких похвал, только это. Высшая благодарность 👍
#мемы
#мемы
Please open Telegram to view this post
VIEW IN TELEGRAM
1😁23👍1
Seeing Statistic Theory
😡 Это то, с чего я начинал, когда начал копать в сторону аналитики данных и статистики в целом, так как понимание статистики и теории вероятностей давалось очень тяжело (начинал с курсов по статистике от Анатолия Карпова). Как понимание с оттачиванием практических примеров - кайф. Только нужно сразу закинуть пару примеров и решать в Python, например, без этого никак.
🤑 Сейчас я советую сразу присмотреться к курсу по статистике и теории вероятностей от ФЭН ВШЭ. Много практики, хорошо для общего понимания академической статистики и тервера. Будет тяжело, но на выходе получите помимо знаний, структуры особенный эффект после обучения.
♟ Если хотите, разберу относительной новый курс по прикладной статистике от ААА, делал анонс второй части тут
Please open Telegram to view this post
VIEW IN TELEGRAM
А вообще классный вариант просто ходить на собесы, набирать опыт оттуда, обычно на них транслируют фактические проблемы, с которыми сталкиваются различные команды.
Дополнительно можно почеленджить ChatGPT с различных продуктов и попросить его валидировать результаты, предоставить лучший вариант и сложить себе куда-то для упрощенного усвоения.
Те, кто любит подкасты, советую Make Sense. Очень разносторонние кейсы + подходы, а также подкасты различных продуктовых команд.
Please open Telegram to view this post
VIEW IN TELEGRAM
2 14❤3👍3 1
Зачем нужен хэш с солью в A/B экспериментах?
😭 Начнем с хэширования. Когда мы запускаем тест, нужно понять, в какую группу попадет пользователь? В контрольную или тестовую? Чтобы сделать это случайным образом, но при этом всегда стабильно, используется хэширование. Берем уникальный идентификатор пользователя, например user_id, пропускаем его через хэш-функцию (чаще MD5), а результат делим по модулю. Например, если результат деления на 2 равен 0, пользователь идет в группу A, если 1, то в группу B. Это гарантирует, что один и тот же пользователь всегда будет попадать в одну и ту же группу.
🧂 Теперь про соль. Если пользователь участвует сразу в нескольких тестах, его распределение в группы может повторяться. Например, в тесте кнопки “Купить” он будет в группе A, и в тесте фильтра товаров он тоже будет в группе A. Это создает пересечения экспериментов и искажает результаты (особенно, когда речь идет про разные слои, которые могут с собой конкурировать). Соль решает эту проблему. Это уникальная строка для каждого теста, которую мы добавляем к user_id перед хэшированием. Она изолирует тесты друг от друга, даже если пользователь участвует сразу в нескольких. То есть соль + хэш позволяет перемешать пользователей псевдорандомом, обеспечивая воспроизмодимость сплитования на платформе.
Таким образом, мы разбили на 2 разные группы. Привязались к идентификатору, конкретному эксперименту и сделали псевдорандомизацию. Можно также генерировать на A/A тестах с изменением соли, обеспечивая рандомизацию пользователей. Это не просто взять и четные значения хэша менять на нечетные и наоборот. Посмотрите, как от соли меняется значение конечного хэша + соли.
Кайф в том, что декодировать сложно и обычно в DWH на идентификатор пользователя могут давать какой-либо хэш или производную от него. А можно просто взять айди в виде строки и добавить соль (название эксперимента или версию), рандомная строка.
И еще один плюс: если вы решите изменить пропорцию распределения, например, сделать 70% пользователей тестовыми, а 30% контрольными, это легко сделать с помощью хэширования. Нужно просто поменять границы.
Понравился пост? Если соберется 100🐳 , выложу пост про виды хэшей и чем они различаются (ну или про слои в A/B экспериментах)
import hashlib
user_id = "12345"
hash_value = int(hashlib.md5(user_id.encode()).hexdigest(), 16)
group = "A" if hash_value % 2 == 0 else "B"
print(group)
experiment_name = "new_checkout_flow"
salted_id = f"{experiment_name}_{user_id}"
hash_value = int(hashlib.md5(salted_id.encode()).hexdigest(), 16)
group = "A" if hash_value % 2 == 0 else "B"
Таким образом, мы разбили на 2 разные группы. Привязались к идентификатору, конкретному эксперименту и сделали псевдорандомизацию. Можно также генерировать на A/A тестах с изменением соли, обеспечивая рандомизацию пользователей. Это не просто взять и четные значения хэша менять на нечетные и наоборот. Посмотрите, как от соли меняется значение конечного хэша + соли.
print(int(hashlib.md5(f'salt2_{123}'.encode()).hexdigest(), 16)), print(int(hashlib.md5(f'salt9_{123}'.encode()).hexdigest(), 16))
Кайф в том, что декодировать сложно и обычно в DWH на идентификатор пользователя могут давать какой-либо хэш или производную от него. А можно просто взять айди в виде строки и добавить соль (название эксперимента или версию), рандомная строка.
И еще один плюс: если вы решите изменить пропорцию распределения, например, сделать 70% пользователей тестовыми, а 30% контрольными, это легко сделать с помощью хэширования. Нужно просто поменять границы.
split_percentage = 70
group = "A" if hash_value % 100 < split_percentage else "B"
Понравился пост? Если соберется 100
Please open Telegram to view this post
VIEW IN TELEGRAM
1🐳92👍4❤1🔥1
Где практиковать SQL?
😮 Давно не было постов вообще про SQL. Не знаю даже почему, хотя самый важный инструмент в нашей работе. Представьте, что вы прошли какие-то курсы, примерно понимаете как все решать, знаете основные концепции, но хочется потрогать задачи реальных компаний. Помню, когда сам проходил различные курсы (в том числе всем известный sql-ex, который форсили постоянно), не хватало какой-то практической составляющей, возможно задач с собеседований компаний.
Какие платформы я советую?
1. StrataScratch - здесь представлены задачи различных зарубежных компаний по SQL и не только. Различные вариации оконных функций, подзапросы, сложные структуры и все это заправлено под задачи с собеседований. https://www.stratascratch.com
2. LeetCode - по SQL я встречал не так много задач, но тем не менее, были интересные над которыми можно подумать. Есть нетипичные, которые не решить просто оконкой и взять актуальное значение данных, надо реально подумать. https://leetcode.com/
Понятно, что есть какие-то курсы, про которые я писал выше. Хочу отметить, что я смотрел. Есть DataCamp, кому-то нравится, кому-то нет. Для меня проблема, что большая часть практики - это просто дополнение запроса из предыдущего шага (с нуля что-то ты можешь и не писать вовсе).
У меня был пост с роадмапом, где я затрагивал SQL, поэтому если вам интересно, тыкайте сюда
🍪 🍪 В скором времени я планирую выкладывать какие-то практические задачи сюда, с которыми реально может столкнуться каждый аналитик, поэтому, если наберется 100 🐳 , делаем! Retention, пенетрации, воронки, критерии для A/B тестов и др.
А чем пользовались вы, когда изучали SQL?
Какие платформы я советую?
1. StrataScratch - здесь представлены задачи различных зарубежных компаний по SQL и не только. Различные вариации оконных функций, подзапросы, сложные структуры и все это заправлено под задачи с собеседований. https://www.stratascratch.com
2. LeetCode - по SQL я встречал не так много задач, но тем не менее, были интересные над которыми можно подумать. Есть нетипичные, которые не решить просто оконкой и взять актуальное значение данных, надо реально подумать. https://leetcode.com/
Понятно, что есть какие-то курсы, про которые я писал выше. Хочу отметить, что я смотрел. Есть DataCamp, кому-то нравится, кому-то нет. Для меня проблема, что большая часть практики - это просто дополнение запроса из предыдущего шага (с нуля что-то ты можешь и не писать вовсе).
У меня был пост с роадмапом, где я затрагивал SQL, поэтому если вам интересно, тыкайте сюда
А чем пользовались вы, когда изучали SQL?
Please open Telegram to view this post
VIEW IN TELEGRAM
2🐳100 6 3❤1
Anonymous Poll
27%
Больше про ML 💻
41%
A/B тесты (теория и практика) 🆎
37%
Материалы для вката (как я изучал, что советую) 💬
35%
Практические продуктовые кейсы 🛒
16%
Мемы 😂
34%
Что-то по подготовке к собеседованиям 💙
17%
Софты 😐
1%
Свой вариант (оставлю в комментариях)
2❤8🐳3🔥2
Как доверительные интервалы помогают решать задачи бизнеса?
😏 Всем привет! В этом посте вообще опишу то, с какой ситуацией можно столкнуться, анализируя эксперименты. Представим, что мы задизайнили эксперимент, определили слои, запустили эксперимент, собрали все требования, ожидания, выбрали целевые метрики и вот мы уже подводи итоги эксперимента. Бизнесу важны по большей части деньги и пользовательский опыт. Так вот, смотрим на метрики, видим, что p-value > alpha - уровня значимости, который определили заранее (возможно даже с какими-то поправками), сразу опускаем руки, ведь эффекта не нашли (нет). Как нам ответить на вопрос бизнесу, а что дальше делать с этой информацией?
😎 В дело вступают доверительные интервалы. Вкратце, мы можем понять в каких заданных границах находится истинное среднее (в бизнесе мы всегда работаем с выборочными величинами, а истинное значение мы можем задать через выборочное среднее, z-значение, стандартное отклонение и размер выборки. Если доверительный интервал разницы средних включает 0, то значит, что эффект незначимый, но давайте рассмотрим конкретный пример.
Мы раскатили на любой из поверхностей фичу, ожидали получить рост конверсии в оплату.
😭 Видим, что p-value низкий, можно даже прокрасить CUPED, стратификацией, но давайте посмотрим более детально. Истинное значение конверсии лежит в промежутке от -0.1% до 1.2%, но что значит для бизнеса?
Предположим, что мы сервис доставки продуктов. ARPPU составляет 1000 рублей => мы можем рассчитать эффект в деньгах, возьмем крайние границы доверительного интервала:
😮 Истинное значение эффекта конверсии лежит в диапазоне от -0.1% до 1.2%. Небольшое ухудшение или хорошее улучшение. Это значит, что при текущем дизайне эксперимента мы не можем с уверенностью сказать, что новая фича улучшает метрику. Однако, если перейти на бизнес-язык, мы видим следующий эффект в деньгах.
➖ Потенциальный минус: -7 000 рублей
➕ Потенциальный плюс: +116 955 рублей
Кажется, что если бизнес может рискнуть, стоит попробовать раскатить конфигурацию с тестовой группой на всех. В дальнейшем можно замерить долгосрочный эффект и посмотреть сколько мы инкрементально получаем денег при раскатке этой фичи с помощью других методов, ну а это в следующих постах!
Если наберется 150🐳 , выложу пост про подборку статей по 🆎
Мы раскатили на любой из поверхностей фичу, ожидали получить рост конверсии в оплату.
import scipy.stats as stats
import numpy as np
control_conversions = 500
control_total = 10000
test_conversions = 555
test_total = 10000
control_rate = control_conversions / control_total
test_rate = test_conversions / test_total
effect = test_rate - control_rate
se = np.sqrt((control_rate * (1 - control_rate)) / control_total +
(test_rate * (1 - test_rate)) / test_total)
z_score = effect / se
p_value = 2 * (1 - stats.norm.cdf(abs(z_score)))
ci_low, ci_high = effect - 1.96 * se, effect + 1.96 * se
print('Разница средних, %')
print(np.round(effect, 3) * 100)
print('Доверительный интервал, %')
print([np.round(ci_low, 3) * 100, np.round(ci_high, 3) * 100])
print('p-value')
print(np.round(p_value, 2))
# Разница средних, %
# 0.5
# Доверительный интервал, %
# [-0.1, 1.2]
# p-value
# 0.08
Предположим, что мы сервис доставки продуктов. ARPPU составляет 1000 рублей => мы можем рассчитать эффект в деньгах, возьмем крайние границы доверительного интервала:
arppu = 1000
low_effect_arppu = ci_low * control_total * arppu
high_effect_arppu = ci_high * control_total * arppu
print([low_effect_arppu, high_effect_arppu])
# [-6955.767415148702, 116955.76741514866]
Кажется, что если бизнес может рискнуть, стоит попробовать раскатить конфигурацию с тестовой группой на всех. В дальнейшем можно замерить долгосрочный эффект и посмотреть сколько мы инкрементально получаем денег при раскатке этой фичи с помощью других методов, ну а это в следующих постах!
Если наберется 150
Please open Telegram to view this post
VIEW IN TELEGRAM
3🐳102🔥8👍7 3❤2 2
Вопрос с собеседования в продуктовую команду
🍴 Всем привет! Этот пост будет сочетать в себе две темы: практические продуктовые кейсы + вопрос с собеседования. В компании вы можете столкнуться с тем, что какая-то метрика (возьмем для примера конверсию в покупку) упала (например, увидели в отчетности или посмотрели в данных), вопрос, почему такое может быть? Сформулируйте ряд гипотез, на что бы вы посмотрели в первую очередь?
Давайте попробуем разогнать в комментариях.
Следующий пост (если наберется 100🐳 ) - будет решение, как бы я подступился к этой задаче
UPD: Давайте возьмем сервис размещения объявлений для примера
Давайте попробуем разогнать в комментариях.
Следующий пост (если наберется 100
UPD: Давайте возьмем сервис размещения объявлений для примера
Please open Telegram to view this post
VIEW IN TELEGRAM
1🐳90 4 3
Заскуль питона (Data Science)
Где практиковать SQL? 😮 Давно не было постов вообще про SQL. Не знаю даже почему, хотя самый важный инструмент в нашей работе. Представьте, что вы прошли какие-то курсы, примерно понимаете как все решать, знаете основные концепции, но хочется потрогать задачи…
Вы набрали достаточное количество реакций, поэтому привожу 1 кейс - это когортный анализ в SQL.
☕️ Этот подход важен, когда нужно понять, что происходит с пользователями спустя какое-то время после их взаимодействия с продуктом. Например, они пользуются новой фичей или заходят в продукт через 1, 7, 14, 30 дней после регистрации? Когортный анализ помогает ответить на такие вопросы.
🍪 🍪 Пример задачи
Допустим, у вас есть продукт, где пользователи регистрируются и совершают действия. Нужно определить, сколько пользователей из каждой когорты (группы, зарегистрированной в один день) возвращаются через разные промежутки времени.
🤔 Что сделаем?
1. Разделим пользователей на когорты по дате регистрации.
2. Посчитаем, сколько пользователей из каждой когорты совершили хотя бы одно действие через 0, 1, 7, 14 и 30 дней.
3. Рассчитаем удержание в процентах относительно размера когорты.
😱 Что делает этот запрос?
🐸 Рассчитываем удержание (retention_rate) как процент активных пользователей от общего числа зарегистрированных в когорте.
Можно выявить, как изменения в продукте (новая фича, интерфейс) влияют на удержание пользователей. Если retention сильно падает после первых дней, это сигнал, что пользователи теряют интерес или сталкиваются с трудностями.
Обратная задача рассчитать Churn Rate, нужно просто сделать 1 - Retention Rate
Если наберется 100🐳 , выложу еще пост с практическим применением SQL, есть еще что рассказать 🔥
Допустим, у вас есть продукт, где пользователи регистрируются и совершают действия. Нужно определить, сколько пользователей из каждой когорты (группы, зарегистрированной в один день) возвращаются через разные промежутки времени.
1. Разделим пользователей на когорты по дате регистрации.
2. Посчитаем, сколько пользователей из каждой когорты совершили хотя бы одно действие через 0, 1, 7, 14 и 30 дней.
3. Рассчитаем удержание в процентах относительно размера когорты.
with cohort_base as (
select
u.user_id,
date(u.registration_date) as cohort_date,
datediff(e.event_date, u.registration_date) as days_since_registration
from users u
left join events e
on u.user_id = e.user_id
where e.event_date is not null
),
cohort_activity as (
select
cohort_date,
days_since_registration,
count(distinct user_id) as active_users
from cohort_base
where days_since_registration between 0 and 30
group by cohort_date, days_since_registration
),
cohort_size as (
select
date(registration_date) as cohort_date,
count(distinct user_id) as cohort_size
from users
group by cohort_date
)
select
ca.cohort_date,
ca.days_since_registration,
round(ca.active_users * 100.0 / cs.cohort_size, 2) as retention_rate
from cohort_activity ca
join cohort_size cs
on ca.cohort_date = cs.cohort_date
order by ca.cohort_date, ca.days_since_registration;
cohort_base
- объединяем таблицу пользователей и таблицу событий, чтобы определить, на какой день с момента регистрации пользователь совершил событие.cohort_activity
- считаем количество уникальных пользователей, которые были активны через 0, 1, 7, 14 и 30 дней после регистрации, для каждой когорты.cohort_size
- определяем размер каждой когорты — количество пользователей, зарегистрировавшихся в конкретный день.Можно выявить, как изменения в продукте (новая фича, интерфейс) влияют на удержание пользователей. Если retention сильно падает после первых дней, это сигнал, что пользователи теряют интерес или сталкиваются с трудностями.
Обратная задача рассчитать Churn Rate, нужно просто сделать 1 - Retention Rate
Если наберется 100
Please open Telegram to view this post
VIEW IN TELEGRAM
1🐳85 5 5👍3🤓2🤷♂1🤷1
Заскуль питона (Data Science)
Вы набрали достаточное количество реакций, поэтому привожу 1 кейс - это когортный анализ в SQL. ☕️ Этот подход важен, когда нужно понять, что происходит с пользователями спустя какое-то время после их взаимодействия с продуктом. Например, они пользуются новой…
Please open Telegram to view this post
VIEW IN TELEGRAM
1😁20 4🔥2
Формат:
🆎 Пост про дизайн экспериментов. Про какие-то статьи. Хочу понять, почему так считаем.
Чем лучше описано то, что хотите видеть, тем легче для меня и это будет в рамках ваших ожиданий
Можно накидать под этот пост комментариев на несколько недель вперед, возьму в соответствующий спринт
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10🐳4 2❤🔥1 1
Заскуль питона (Data Science) pinned «🍪 🍪 Понравился формат, когда спрашиваю про то, о чем хотите видеть посты. Давайте постараемся внедрить. О чем пишем на следующей неделе? Выберу среди топа залайканных комментариев. Формат: 💻 Пост про какую-то область в ML, практические кейсы в работе аналитика…»
Всем привет!
Хочу порекомендовать вам канал Start Career in DS - один из самых крупных каналов с материлами по DS и смежным темам
👉 Автор канала Рома Васильев руководит отделом аналитики международного поиска Яндекса, преподаёт на "Karpov.сourses", на ФКН Вышки и в Центральном Университете Т-Банка 👨🎓
В канале вы можете найти полезные материалы для изучения и подготовки к собеседованиям:
🦾 Классический ML – база: справочник основных алгоритмов
👨🏫 Что ботать, чтобы пройти на стажировку аналитиком в Яндекс?
🤖 Модели перевернувшие NLP: как устроен Transformer
📚Deep Learning: теоретический справочник по базовым концепциям
Подписывайтесь, ребята делают достойный контент 🙂
Хочу порекомендовать вам канал Start Career in DS - один из самых крупных каналов с материлами по DS и смежным темам
👉 Автор канала Рома Васильев руководит отделом аналитики международного поиска Яндекса, преподаёт на "Karpov.сourses", на ФКН Вышки и в Центральном Университете Т-Банка 👨🎓
В канале вы можете найти полезные материалы для изучения и подготовки к собеседованиям:
🦾 Классический ML – база: справочник основных алгоритмов
👨🏫 Что ботать, чтобы пройти на стажировку аналитиком в Яндекс?
🤖 Модели перевернувшие NLP: как устроен Transformer
📚Deep Learning: теоретический справочник по базовым концепциям
Подписывайтесь, ребята делают достойный контент 🙂
Telegram
Start Career in DS
Тут публикуются материалы для прокачки скиллов в DS и подготовки к собеседованиям.
Пишем про технические тулзы, визуализацию данных, бизнесовые задачи, разбираем ML-алгоритмы и обсуждаем смежные темы :)
Автор: @RAVasiliev
№ 5141779667
Пишем про технические тулзы, визуализацию данных, бизнесовые задачи, разбираем ML-алгоритмы и обсуждаем смежные темы :)
Автор: @RAVasiliev
№ 5141779667
❤9🔥5😱4
Дизайн 🆎 экспериментов и почему это важно.
😱 Ранее я считал, что важнее всего подводить итоги, но как оказалось не только. Дизайн эксперимента подразумевает определенную структуру, комплекс действий, направленных для корректного запуска и последующего анализа эксперимента. Подразумевается, что разметка уже готова (более подробно хочу рассказать в следующих постах).
🎄 При проектировании A/B эксперимента учитывайте сезонность, например, в Новый Год пользователи могут вести себя по-другому
💡 Нужно определиться с гипотезой. Проводя A/B тестирование, мы всегда говорим о постановке различных гипотез, как на языке бизнеса (в понятном для всех формате), так и на языке статистики, когда говорим про нулевые и альтернативные гипотезы. Важно понимать, что от гипотезы зависит многое. По сути, как мы дальше будем интерпретировать различные варианты.
🙅♂️ Риски. Какие могут быть риски для компании? Если что-то резонирующее, которое сразу улетит в СМИ - тест можно перезапускать, можем получить при анализе невалидные результаты. Например, если мы просто убираем точку входа или полностью меняем популярное приложение при раскатке 50/50.
🗒 Определение метрик и теста. А на что мы смотрим, когда подводим итоги? Может есть какие-то целевые, по которым мы хотим принимать решения, а может есть какие-то вспомогательные, которые нам нужны для дальнейшего анализа. Если у нас есть своя A/B платформа, проблемой с подсчетов быть не должно. На этом этапе важно также понимать какой тест мы используем для анализа.
☕ Сегменты пользователей. Хотим мы катиться на всех или нет зависит от сетапа эксперимента, возможно, нам нужно брать определенный срез пользователей (старички/новички, пользователи, обладающие каким-то признаком).
🌳 Дерево принятия решений. Если метрик несколько, мы должны определиться с различными вариантами, когда эксперимент катим, а когда нет. Если метрика серая, то..., а если нет, то. Базово должно фиксироваться до проведения эксперимента.
😁 Определение MDE / размера выборки / длительности эксперимента. Мы должны понять на истории, а действительно ли мы сможем прокрасить эксперимент? По сути, тот же MDE нужен нам для определения примерной длительности эксперимента или ответа на вопрос, а эта метрика чувствительна вообще будет на данном срезе или нет?
🥪 Другие слои. А считаем ли мы корректным проводить эксперимент, если слои забиты, а насколько забиты, все ли окей в этом плане?
📱 Если есть своя команда разработки и платформа, то с заведением пользователей (кому какой флаг навешиваем) проблем нет, а если самому, то нужно продумать. Не все могут себе позволить запускать так тесты. Если нет, то со старичками понятно, мы отдаем контроль и тест списком, с новичками сложнее, как будто нужно раз в какое-то время на дню отдавать пользователей списками с айдишниками.
🤕 Тестинг. Посмотрите, как функционал работает, корректно ли все раскатилось, нет ли проблем, походите по различным страницам приложения, может найдете какие-то проблемы, которые можно в дальнейшем пофиксить с помощью разработки
✅ Корректное логирование эксперимента. Можно раскатить на себя, посмотреть, собрать различные события в тестовой группе, попробовать посчитать метрики (просмотр, клик по фиче X, которую мы запускаем на тестовую группу).
🚀 Запуск эксперимента
От вас жду 100🐳 за пост. Далее пройдемся по вопросам, касаемых разметки и ТЗ для команды разработки и я продолжу писать посты из списка.
От вас жду 100
Please open Telegram to view this post
VIEW IN TELEGRAM
1🐳78 4❤3 2🌚1
Подглядывание в 🆎 тестах. Я ошибся, я могу один раз ошибиться?
Всем привет! В этом посте я хочу затронуть одну из базовых проблем, с которыми сталкивалось большинство людей - это проблема подглядывания.
В чем основная суть?
Предположим, мы запустили эксперимент, который должен идти 14 дней (так мы определили по дизайну). Возьмем для примера базовый t-test для двух выборок.
Вдруг мы решили посмотреть на результаты, видим значимое изменение. По сути (если мы знаем формулу для t-test'а или другого статистического критерия), накопительно на каждый день можем посчитать статистику и увидеть, что, например, в 4 день (ладно-ладно, в 7), мы увидели значимое изменение. Пришла в головугениальная мысль отрубить тест и экстраполировать выводы, но так, очевидно делать нельзя, и вот почему:
1. Мы рассчитывали сроки эксперимента в зависимости от трафика. Чем меньше пользователей, тем сильнее шум.
2. Доверительный интервал получается весьма широким, мы можем не до конца быть уверенными в эффекте (та же история может случиться и в обратную сторону, p-value от статистики (например, разницы средних) может "отскочить" от промежутка (0, alpha). Если бы мы подсмотрели, мы сделали неправильное решение.
3. На симуляциях мы повышаем ошибку первого рода (FPR) достаточно сильно. Подглядывание даже может имитировать подбрасывание монетки (по факту, мы проверяем несколько гипотез, что за 1, 2, 3, ... n день средние различаются, тем самым мы рискуем ошибиться. Подробнее можно посмотреть тут
Что можно посмотреть по этому поводу?
1. Статья от GoPractice..
2. Видео от Анатолия Карпова.
3. Пост от ProductSense на Facebook
Про это очень много есть статей + давно было интересно покопаться в проблеме подглядывания, например, ребята из Spotify использовали методы последовательного тестирования для досрочного принятия решения (чтобы не держать эксперимент какое-то время). История может быть актуальна, если мы хотим принимать правильные решения как можно чаще, а неправильные - сразу отрубать, чтобы не терять деньги во время теста. Также читал, что советуют обращаться к байесовскому тестированию, но давайте ко всему последовательно).
🐳 🐳 🐳 100 реакций на пост и разгоняем дальше 🐳 🐳 🐳
Всем привет! В этом посте я хочу затронуть одну из базовых проблем, с которыми сталкивалось большинство людей - это проблема подглядывания.
В чем основная суть?
Предположим, мы запустили эксперимент, который должен идти 14 дней (так мы определили по дизайну). Возьмем для примера базовый t-test для двух выборок.
Вдруг мы решили посмотреть на результаты, видим значимое изменение. По сути (если мы знаем формулу для t-test'а или другого статистического критерия), накопительно на каждый день можем посчитать статистику и увидеть, что, например, в 4 день (ладно-ладно, в 7), мы увидели значимое изменение. Пришла в голову
1. Мы рассчитывали сроки эксперимента в зависимости от трафика. Чем меньше пользователей, тем сильнее шум.
2. Доверительный интервал получается весьма широким, мы можем не до конца быть уверенными в эффекте (та же история может случиться и в обратную сторону, p-value от статистики (например, разницы средних) может "отскочить" от промежутка (0, alpha). Если бы мы подсмотрели, мы сделали неправильное решение.
3. На симуляциях мы повышаем ошибку первого рода (FPR) достаточно сильно. Подглядывание даже может имитировать подбрасывание монетки (по факту, мы проверяем несколько гипотез, что за 1, 2, 3, ... n день средние различаются, тем самым мы рискуем ошибиться. Подробнее можно посмотреть тут
Что можно посмотреть по этому поводу?
1. Статья от GoPractice..
2. Видео от Анатолия Карпова.
3. Пост от ProductSense на Facebook
Про это очень много есть статей + давно было интересно покопаться в проблеме подглядывания, например, ребята из Spotify использовали методы последовательного тестирования для досрочного принятия решения (чтобы не держать эксперимент какое-то время). История может быть актуальна, если мы хотим принимать правильные решения как можно чаще, а неправильные - сразу отрубать, чтобы не терять деньги во время теста. Также читал, что советуют обращаться к байесовскому тестированию, но давайте ко всему последовательно).
Please open Telegram to view this post
VIEW IN TELEGRAM
1🐳68 5 5🔥2❤1
Please open Telegram to view this post
VIEW IN TELEGRAM
1🐳39❤8🔥6 2👍1