Forwarded from Тимлид Очевидность | Евгений Антонов
Я принес. How to become a more effective engineer
Сегодня статья на английском https://newsletter.pragmaticengineer.com/p/how-to-become-a-more-effective-engineer
Читается она более-менее легко и понятно, но если вам будет сложно, то нынче браузеры умеют довольно неплохо переводить такие лонгриды.
Несмотря на то, что в названии есть слово engineer, речь пойдет не об инженерии, а о том, как работает жизнь и система, в которой вы работаете.
На мой взгляд, эту статью на точно обязательно читать менеджерам и тимлидам. Мидл-менеджмент чаще всего уже достаточно прожженный, чтобы это всё знать 🙂 Но даже и линейным сотрудникам я бы советовал ознакомиться, чтобы снять розовые очки и не испытывать типовые страдания от того, что всё, якобы, неправильно, что работать должно не так, а эдак, в руководстве делают глупости, никто не понимает очевидных вещей и всё в таком духе.
Основной посыл статьи – хорошенько порефлексировать и понять, как работает система, в которой вы работаете. Понять её ограничения (с которыми вы вряд ли что-то сделаете, и не надо тратить время, силы, нервы и выгорать в этой борьбе с ветряными мельницами), культуру, принципы, несовершенства, неформальную иерархию.
А после этого станет намного более понятно, что вам нужно принять, с чем можно бороться, а где бесполезно жечь нервы и вообще забить/дистанцироваться/уйти.
После 18 лет в ИТ мне эта статья кажется довольно мудрой и жизненной. В начале карьеры я бы её, скорее всего, захейтил, сказал бы, что это «политика», приспособленчество и надо жестко бороться абсолютно за всё «правильное», против абсолютно всего «неправильного».
Сегодня статья на английском https://newsletter.pragmaticengineer.com/p/how-to-become-a-more-effective-engineer
Читается она более-менее легко и понятно, но если вам будет сложно, то нынче браузеры умеют довольно неплохо переводить такие лонгриды.
Несмотря на то, что в названии есть слово engineer, речь пойдет не об инженерии, а о том, как работает жизнь и система, в которой вы работаете.
На мой взгляд, эту статью на точно обязательно читать менеджерам и тимлидам. Мидл-менеджмент чаще всего уже достаточно прожженный, чтобы это всё знать 🙂 Но даже и линейным сотрудникам я бы советовал ознакомиться, чтобы снять розовые очки и не испытывать типовые страдания от того, что всё, якобы, неправильно, что работать должно не так, а эдак, в руководстве делают глупости, никто не понимает очевидных вещей и всё в таком духе.
Основной посыл статьи – хорошенько порефлексировать и понять, как работает система, в которой вы работаете. Понять её ограничения (с которыми вы вряд ли что-то сделаете, и не надо тратить время, силы, нервы и выгорать в этой борьбе с ветряными мельницами), культуру, принципы, несовершенства, неформальную иерархию.
А после этого станет намного более понятно, что вам нужно принять, с чем можно бороться, а где бесполезно жечь нервы и вообще забить/дистанцироваться/уйти.
После 18 лет в ИТ мне эта статья кажется довольно мудрой и жизненной. В начале карьеры я бы её, скорее всего, захейтил, сказал бы, что это «политика», приспособленчество и надо жестко бороться абсолютно за всё «правильное», против абсолютно всего «неправильного».
Pragmaticengineer
How to become a more effective engineer
The importance of soft skills, implicit hierarchies, getting to “small wins”, understanding promotion processes and more. A guest post from software engineer Cindy Sridharan.
Forwarded from Тимлид Очевидность | Евгений Антонов
Я принес. Контакты… конфликты…
Игры вам приносил, сериалы и фильмы приносил, а вот мультики еще нет. Вот вам для затравки 4 отрывка из старого мультика 1984 года «Контакты… Конфликты…». Сняли 40 лет назад, а актуально всё и по сей день 🙂
https://www.youtube.com/watch?v=edha3Krhick – про то, как «помогает» совещание и почему работягу не мотивирует прибавка.
https://www.youtube.com/watch?v=EH_3ukkNuwg – про то, как у нас выстроилась очередь СРОЧНОЙ РАБОТЫ уже вплоть до пенсии, а она всё продолжает прибывать.
https://www.youtube.com/watch?v=Ovs5LSl1yOk – встречал граждан, у которых был такой же режим планирования и приоритизации 🙂
https://www.youtube.com/watch?v=3LqSbUdz1sY – а это когда слова и аргументы слушать не хотят, но объясниться и договориться о дальнейшем надо.
Если у вас есть еще любимые серии, заносите в комментарии. Ну а если ситуации знакомы вам, то ставьте 💯
Игры вам приносил, сериалы и фильмы приносил, а вот мультики еще нет. Вот вам для затравки 4 отрывка из старого мультика 1984 года «Контакты… Конфликты…». Сняли 40 лет назад, а актуально всё и по сей день 🙂
https://www.youtube.com/watch?v=edha3Krhick – про то, как «помогает» совещание и почему работягу не мотивирует прибавка.
https://www.youtube.com/watch?v=EH_3ukkNuwg – про то, как у нас выстроилась очередь СРОЧНОЙ РАБОТЫ уже вплоть до пенсии, а она всё продолжает прибывать.
https://www.youtube.com/watch?v=Ovs5LSl1yOk – встречал граждан, у которых был такой же режим планирования и приоритизации 🙂
https://www.youtube.com/watch?v=3LqSbUdz1sY – а это когда слова и аргументы слушать не хотят, но объясниться и договориться о дальнейшем надо.
Если у вас есть еще любимые серии, заносите в комментарии. Ну а если ситуации знакомы вам, то ставьте 💯
YouTube
Контакты и конфликты — совещание помогло
Контакты и конфликты 4 выпуск — совещание ещё никому не помогло
Forwarded from Dev Easy Notes
Пришло время сделать новый закреп.
Количество людей в канале понемногу растёт, поэтому пара строк о том, что это вообще за канал. Пишу я про разработку в целом: про собесы, технологии, личный опыт и качалку.
Это канал про разработку для тех, кто устал от беззубых душнил, корпоративных блогов или ребят, которые падают в обморок при виде мата в тексте.
Истории с собесов:
👉 Самый забавный собес в моей карьере
👉 Собес в Авито
👉 Собес в Aliexpress
👉 Советы по прохождению алго-секции
👉 Как уменьшить волнение перед собесом
Истории и рофлы:
👉 Мой каминг-аут
👉 Про первое место работы
👉 Как я попал в инфру
👉 Какого это работать в БигТехе
👉 Приключения мобильного разраба в мире инфры
Для любителей сериалов:
👉 Про CI
👉 Про тесты
👉 Про DI
Немного базы про разработку:
👉 База программирования в одном посте
👉 Советы, как не проебаться в работе
👉 Как я навайбкодил синтаксический анализ
👉 Оцениваем сроки
👉 Что такое архитектура
👉 Разгоняем про логи
👉 В IT нет научного подхода
Boost канала для неравнодушных
Количество людей в канале понемногу растёт, поэтому пара строк о том, что это вообще за канал. Пишу я про разработку в целом: про собесы, технологии, личный опыт и качалку.
Это канал про разработку для тех, кто устал от беззубых душнил, корпоративных блогов или ребят, которые падают в обморок при виде мата в тексте.
Истории с собесов:
👉 Самый забавный собес в моей карьере
👉 Собес в Авито
👉 Собес в Aliexpress
👉 Советы по прохождению алго-секции
👉 Как уменьшить волнение перед собесом
Истории и рофлы:
👉 Мой каминг-аут
👉 Про первое место работы
👉 Как я попал в инфру
👉 Какого это работать в БигТехе
👉 Приключения мобильного разраба в мире инфры
Для любителей сериалов:
👉 Про CI
👉 Про тесты
👉 Про DI
Немного базы про разработку:
👉 База программирования в одном посте
👉 Советы, как не проебаться в работе
👉 Как я навайбкодил синтаксический анализ
👉 Оцениваем сроки
👉 Что такое архитектура
👉 Разгоняем про логи
👉 В IT нет научного подхода
Boost канала для неравнодушных
Forwarded from Trabun | AI, Tech, Culture, Trends
ChatGPT только что убил тысячи образовательных AI-стартапов (ладно, тысячи нервных клеток их фаундеров) — в сервисе появится специальный режим «Study Together».
1. В этом режиме вместо того чтобы сразу выдавать готовый ответ, ChatGPT задаст уточняющие вопросы, выяснит цель, уровень знаний и интересы по теме, а затем построит диалог так, чтобы пользователь сам пришел к верному решению или пониманию материала.
2. Материал разбивается на небольшие части, чтобы обучение шло поэтапно и было максимально понятным. Вместо длинных лекций — короткие сообщения, вопросы, практические задачи, обсуждения.
3. Режим пока в стадии тестирования и доступен немногим. В будущем возможно появятся групповые сессии — типа учебного чата или семинара. А еще, судя по конкурентам, возможность загрузить учебные материалы.
4. Пока ощущается, что Study Together — не отдельная модель или файнтюн, скорее набор системных промптов и дополнительный UI специально для этого режима.
Теперь про конкурентов, которые уже довольно давно реализовали эту фичу:
♥️ Gemini Learning Coach Gem
Еще в прошлом году в Gemini появился аналог GPTs, настраиваемых под пользователя кастомных Gems. Среди уже предустановленных был Learning Coach. Коуч от Google использует специальную модель LearnLM, обученную на образовательных данных и встроен по всей экосистеме продуктов Google.
♥️ Claude for Education
Такой же специальный режим тьютора: загрузка материалов, составление плана, ответы на вопросы, помощь с
эссе и прочее. В Learning Mode используется специализированный RLHF-пайплайн (Reinforcement Learning from Human Feedback), где модель дообучается на педагогических диалогах и поощряется за создание вопросов, а не готовых ответов. В архитектуре добавлены компоненты для отслеживания логики рассуждений и адаптации сложности вопросов под контекст.
Сфера образования — лакомый кусочек для AI-гигантов. Появление ChatGPT и других подобных сервисов так безнадежно её задисраптило, что мы буквально будем вынуждены перепридумать как учиться по-новому с помощью AI. ChatGPT тут как Apple — выходит на рынок не первым и очень осторожно, возможно не с лучшим решением — но повлияет мощно за счет своего масштаба.
1. В этом режиме вместо того чтобы сразу выдавать готовый ответ, ChatGPT задаст уточняющие вопросы, выяснит цель, уровень знаний и интересы по теме, а затем построит диалог так, чтобы пользователь сам пришел к верному решению или пониманию материала.
2. Материал разбивается на небольшие части, чтобы обучение шло поэтапно и было максимально понятным. Вместо длинных лекций — короткие сообщения, вопросы, практические задачи, обсуждения.
3. Режим пока в стадии тестирования и доступен немногим. В будущем возможно появятся групповые сессии — типа учебного чата или семинара. А еще, судя по конкурентам, возможность загрузить учебные материалы.
4. Пока ощущается, что Study Together — не отдельная модель или файнтюн, скорее набор системных промптов и дополнительный UI специально для этого режима.
Теперь про конкурентов, которые уже довольно давно реализовали эту фичу:
Еще в прошлом году в Gemini появился аналог GPTs, настраиваемых под пользователя кастомных Gems. Среди уже предустановленных был Learning Coach. Коуч от Google использует специальную модель LearnLM, обученную на образовательных данных и встроен по всей экосистеме продуктов Google.
Такой же специальный режим тьютора: загрузка материалов, составление плана, ответы на вопросы, помощь с
эссе и прочее. В Learning Mode используется специализированный RLHF-пайплайн (Reinforcement Learning from Human Feedback), где модель дообучается на педагогических диалогах и поощряется за создание вопросов, а не готовых ответов. В архитектуре добавлены компоненты для отслеживания логики рассуждений и адаптации сложности вопросов под контекст.
Сфера образования — лакомый кусочек для AI-гигантов. Появление ChatGPT и других подобных сервисов так безнадежно её задисраптило, что мы буквально будем вынуждены перепридумать как учиться по-новому с помощью AI. ChatGPT тут как Apple — выходит на рынок не первым и очень осторожно, возможно не с лучшим решением — но повлияет мощно за счет своего масштаба.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Метаверсище и ИИще (Sergey Tsyptsyn ️️)
This media is not supported in your browser
VIEW IN TELEGRAM
Ну и наконец-то Google Flow раскатали почти на весь мир, включая Европу.
https://labs.google/fx/tools/flow
У меня открывается без всякого ВПН.
https://blog.google/technology/google-labs/flow-adds-speech-expands/
Нужна подписка Pro.
И да, это липсинк по начальной фотке.
@cgevent
https://labs.google/fx/tools/flow
У меня открывается без всякого ВПН.
https://blog.google/technology/google-labs/flow-adds-speech-expands/
Нужна подписка Pro.
И да, это липсинк по начальной фотке.
@cgevent
Forwarded from Нейронавт | Нейросети в творчестве
This media is not supported in your browser
VIEW IN TELEGRAM
Kontext Komposer + Kontext-powered Presets
Инструменты от Black Forest Labs, которые позволяют пользователям преобразовывать изображения без письменных подсказок, предлагая такие функции, как новые локации, пересветы, размещение товаров и создание киноплакатов.
На реддите уже надергали системных промптов из новых инструментов
спасибо @asleephidden
#imageediting
Инструменты от Black Forest Labs, которые позволяют пользователям преобразовывать изображения без письменных подсказок, предлагая такие функции, как новые локации, пересветы, размещение товаров и создание киноплакатов.
На реддите уже надергали системных промптов из новых инструментов
спасибо @asleephidden
#imageediting
Forwarded from 🟡NeuroGraph (Сергей NeuroGraph)
Сегодня генератор видео и изображений RunWay обновили одну из своих лучших фич - RunWay Act, теперь уже версия 2.
Act 1 - делал лучший на рынке липсинк из видео в видео.
Сейчас функционал улучшен и расширен.
Улучшен захвата движения, он теперь нового поколения со значительными улучшениями качества и поддержкой отслеживания головы, лица, тела и рук.
Для Act-2 требуется только видеозапись движения и референсный персонаж.
Act 1 - делал лучший на рынке липсинк из видео в видео.
Сейчас функционал улучшен и расширен.
Улучшен захвата движения, он теперь нового поколения со значительными улучшениями качества и поддержкой отслеживания головы, лица, тела и рук.
Для Act-2 требуется только видеозапись движения и референсный персонаж.
Forwarded from Aspiring Data Science (Anatoly Alekseev)
YouTube
Calculating Options Greeks That Matter: Delta, Gamma, Theta - Raj Malhotra
Join the ITPM Online Implementation Weekend August 1st-3rd 8am till 10am each day.
Three days of intense Professional Trader level Webinars designed to make Retail Traders consistently Profitable.
BOOK YOUR TICKET CLICK HERE;-
https://www.eventbrite.com/e/itpm…
Three days of intense Professional Trader level Webinars designed to make Retail Traders consistently Profitable.
BOOK YOUR TICKET CLICK HERE;-
https://www.eventbrite.com/e/itpm…
Forwarded from Душный NLP
Соскучились по конференциям? Тогда ICML 2025 спешит на помощь!
В Ванкувере стартовала конференция ICML, а это значит, что мы — уже по традиции — будем делиться самым интересным с мероприятия. И вот первая подборка постеров, с пылу с жару.
Scion: Training Deep Learning Models with Norm-Constrained LMOs
Самый популярный оптимизатор — AdamW — не делает никаких предположений о геометрии весов модели. Из-за этого во время обучения надо накапливать и хранить статистики градиента. В Scion сразу вводят предположение о норме весов и используют linear minimization oracle для вычисления их апдейта на каждой итерации. Для разных типов слоёв можно (и нужно) использовать разные нормы.
Получаем менее требовательный к памяти алгоритм — не надо хранить первый и второй моменты градиента. Кроме того, оптимальные гиперпараметры переносятся между моделями разных размеров. А главное — Scion находит лучший лосс по сравнению с AdamW и позволяет сократить общее время обучения на 25-40% . Это происходит благодаря большому батчу.
Learning Dynamics in Continual Pre-Training for Large Language Models
Было много постеров о scaling laws. На этом — исследуют динамику дообучения (continual Pre-training), зависимость от lr schedule и от данных. Заметили, что на дообучении лосс сходится к тому же значению, что и при обучении на этом же датасете с нуля. Кроме того, лосс повторяет форму lr scheduler с некоторой задержкой. Опираясь на это, выводят scaling law. Ну а дальше подбирают некоторые оптимальные гиперпараметры обучения.
Scaling Collapse Reveals Universal Dynamics in Compute-Optimally Trained Neural Networks
Ещё один интересный постер о scaling law. Здесь показали, что если построить график нормированного лосса (нормируем на финальное значение) от нормированного компьюта (переводим в [0; 1]), то кривые для моделей разных размеров накладываются друг на друга. Причём этот феномен зависит от lr и lr scheduler. Для переобученных моделей кривые будут накладываться с некоторым шумом, а для неоптимальных lr — могут и вовсе расходиться. Также выводят scaling law, который зависит от lr scheduler. Как это можно использовать на практике — пока вопрос открытый.
Layer by Layer: Uncovering Hidden Representations in Language Models
Интересный постер об эмбеддингах промежуточных слоёв трансформера. Всегда считалось, что если нужны эмбеддинги для какой-нибудь задачи (например, классификации), то надо просто снять их с последнего слоя, и будет хорошо. А здесь авторы исследовали, насколько хороши эмбеддинги промежуточных слоёв (проверяют на MTEB), и оказалось, что всегда лучше брать какой-то промежуточный. Чтобы узнать, какой именно — считаем метрику prompt entropy для каждого слоя по некоторому набору входных данных. Чем она меньше — тем лучше будут работать эмбеддинги с этого слоя.
Интересным поделился❣ Ермек Капушев
#YaICML25
Душный NLP
В Ванкувере стартовала конференция ICML, а это значит, что мы — уже по традиции — будем делиться самым интересным с мероприятия. И вот первая подборка постеров, с пылу с жару.
Scion: Training Deep Learning Models with Norm-Constrained LMOs
Самый популярный оптимизатор — AdamW — не делает никаких предположений о геометрии весов модели. Из-за этого во время обучения надо накапливать и хранить статистики градиента. В Scion сразу вводят предположение о норме весов и используют linear minimization oracle для вычисления их апдейта на каждой итерации. Для разных типов слоёв можно (и нужно) использовать разные нормы.
Получаем менее требовательный к памяти алгоритм — не надо хранить первый и второй моменты градиента. Кроме того, оптимальные гиперпараметры переносятся между моделями разных размеров. А главное — Scion находит лучший лосс по сравнению с AdamW и позволяет сократить общее время обучения на 25-40% . Это происходит благодаря большому батчу.
Learning Dynamics in Continual Pre-Training for Large Language Models
Было много постеров о scaling laws. На этом — исследуют динамику дообучения (continual Pre-training), зависимость от lr schedule и от данных. Заметили, что на дообучении лосс сходится к тому же значению, что и при обучении на этом же датасете с нуля. Кроме того, лосс повторяет форму lr scheduler с некоторой задержкой. Опираясь на это, выводят scaling law. Ну а дальше подбирают некоторые оптимальные гиперпараметры обучения.
Scaling Collapse Reveals Universal Dynamics in Compute-Optimally Trained Neural Networks
Ещё один интересный постер о scaling law. Здесь показали, что если построить график нормированного лосса (нормируем на финальное значение) от нормированного компьюта (переводим в [0; 1]), то кривые для моделей разных размеров накладываются друг на друга. Причём этот феномен зависит от lr и lr scheduler. Для переобученных моделей кривые будут накладываться с некоторым шумом, а для неоптимальных lr — могут и вовсе расходиться. Также выводят scaling law, который зависит от lr scheduler. Как это можно использовать на практике — пока вопрос открытый.
Layer by Layer: Uncovering Hidden Representations in Language Models
Интересный постер об эмбеддингах промежуточных слоёв трансформера. Всегда считалось, что если нужны эмбеддинги для какой-нибудь задачи (например, классификации), то надо просто снять их с последнего слоя, и будет хорошо. А здесь авторы исследовали, насколько хороши эмбеддинги промежуточных слоёв (проверяют на MTEB), и оказалось, что всегда лучше брать какой-то промежуточный. Чтобы узнать, какой именно — считаем метрику prompt entropy для каждого слоя по некоторому набору входных данных. Чем она меньше — тем лучше будут работать эмбеддинги с этого слоя.
Интересным поделился
#YaICML25
Душный NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM