Интересное что-то
530 subscribers
2.75K photos
253 videos
140 files
4.54K links
Материалы и мысли, понадерганные отовсюду
Блог: https://t.iss.one/asisakov_channel
Чат: https://t.iss.one/youknowds_chat
Download Telegram
Forwarded from Denis Sexy IT 🤖
This media is not supported in your browser
VIEW IN TELEGRAM
(Сделайте потише динамики)

Google выкатил MagentaRT модельку для генерации музыки в реальном времени – я поигрался и прям залип; запускается она сейчас не очень удобно, но будет очень классно когда кто-то обернет это в простой интерфейс

Как в видео, модель может играть бесконечно, сама меняя рисунок композиции – ждем новый уровень музыки для лифтов / магазинов / кафе

Модель | Google Colab для запуска | Анонс
Forwarded from Denis Sexy IT 🤖
Типичный_совет_от_онлайн курсов_по_чатгпт.jpg
Forwarded from Daniilak — Канал
6 инструментов для преобразования кода в диаграммы

Diagrams — универсальный инструмент для создания различных диаграмм с использованием текстового кода, поддерживающий Python и JavaScript
Mermaid — использует синтаксис, похожий на Markdown, для генерации блок-схем, последовательностных диаграмм и диаграмм Ганта
Markmap — использует Markdown-синтаксис для визуализации структуры и связей идей или кода
ASCIIFlow — инструменты для создания диаграмм в формате ASCII-арта с использованием обычного текста, такие как asciiflow и Monodraw
PlantUML — популярный инструмент с открытым исходным кодом для создания диаграмм классов, активности и развертывания, поддерживающий множество языков программирования
GoDiagram — аналог Diagrams, но на языке Go

#сервисы@daniilak
Ловите запись суперстрима в Акулах по ИИ кодингу и вайб кодингу

Лично я многое для себя почерпнул. Рекомендую как новичкам, так уже и опытным разрабам.

Новичкам может показаться местами сложно, т.к. сильно погружаемся в технические детали. Но не спешите отключаться, иногда часто периодически материал лайтовый, в нем можно прям находить жемчужины! Час просмотра и у вас жемчуга на колье подруге наберется🥺! Инфа 100%

Смотреть на ютубе

Нетехнарям открывать видео на свой свой страх и риск😄
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Geodatamess
Материалы курса "Пространственный анализ урбанизированных территорий"

В течение семестра получилось наконец-то сделать наиболее полную версию своего курса с презентациями лекций на двух языках: английском и русском, и практической частью на базе QGIS и GeoDa.

Несмотря на фигурирующее в названии словосочетание "урбанизированные территории" курс скорее общий о пространственном анализе с захватом пары смежных тем.

Все материалы по ссылке https://baltti.github.io/spatial-analysis/
Почему в последнее время в канале больше постов про AI+Coding, чем про продукты с LLM под капотом?

Потому, что актуальных проблем с AI+Coding сейчас больше, чем с разработкой продуктов. Тут есть две причины.

Во-первых, паттерны самых типовых и удачных проектов для внедрения в бизнес - уже известны. Это: (1) Data Extraction и (2) Search Assistants

Мы их уже обсуждали в канале не раз (см оглавление разборов кейсов). Берется LLM посовременней (лучше сразу VLM, если надо с PDF работать), добавляется туда обязательно Structured Output, а в схему прописывается Custom Chain-of-Thought в виде Checklist. Все!

Этого достаточно для реализации больших и дорого выглядящих проектов вроде “автоматизация поиска ошибок во входящих purchase orders”, “медицинский ассистент для приема больных”, “сопоставление номенклатур компонентов между поставщиками (чтобы следить за рынком и продавать быстрее)” и тому подобное.

Да, есть всякие copilots, RAGs, reasoning workflows, agents, но там требуется куда больше телодвижений, риски больше, а прибыльность меньше.

Так что знакомые мне компании и команды пока скучно копошатся и осваивают открывшийся им объем работ с относительно безрисковыми подходами. Принципиально новых кейсов пока нет, но вот дел очень много. Все упирается в разработку и нехватку специалистов, которые могут комфортно разрабатывать системы с LLM под капотом.

И вот это как раз ведет ко второй причине - AI+Coding - это как раз тот инструмент, который может частично компенсировать нехватку “грубой” рабочей силы и разгрузить специалистов. AI не заменяет разработчиков, просто позволяет занять им место “повыше” - вместо проверки вариантов вручную, исследований, поиска проблем, можно сэкономить время и отдать задачи джунам в виде десятка AI Agents. Это ускоряет итерации и улучшает прибыльность. Примерно получается ускорение 5x-7x (дальше - упираемся в самих специалистов).

Но есть нюанс - тут надо многому учиться, а это - процесс небыстрый. Разработчикам надо учиться как использовать современные AI инструменты эффективно, чтобы они помогали, а не наворачивали дел. А мне самому надо учиться тому, как эти команды разработчиков учить. Ведь мало что-то наглядно показать, надо еще помочь уложить в систему, закрепить полученный материал, отработать на практике и проверить.

Поэтому у меня в последние месяцы голова болит больше про AI+Coding, чем про продукты с LLM под капотом. Реализация единичных AI продуктов в компаниях сейчас уже не такая большая проблема, как масштабирование всего этого процесса вширь.

И что-то говорит, что дальше будет еще веселее.

Ваш, @llm_under_hood 🤗
Forwarded from Quant Valerian
Майндсет тимлида и его руководителя

Большинство тимлидов занимают ролевую модель папочки для своих сотрудников. Это такие маленькие, сплоченные коллективы, которые чувствуют, что живут в страшном и жестоком мире, где все, кто не входит в команду, пытаются их обмануть, сожрать и унизить. Тимлиды же никого подпускают к своим ребятам, закрывают их грудью, принимая на себя все летящие снаружи вопросы, претензии и задачи. Любой ценой нужно недопустить, чтобы злой проджект навалил в спринт своих задач побольше. Всеми силами экономить энергию и время своих ребят, отбивая задачи в смежников или в небытие. И сотрудники таких тимлидов, обычно, любят, потому что чувствуют, как за них врубаются, потому что имеют время на технические, интересные задачки, потому что общий враг, в принципе, хорошо сплочает коллективы.

А вот тимлид тимлидов смотрит на картину несколько иначе. Со стороны выглядит, что он делает то же самое: отбивает какие-то задачи и проекты в смежников или небытие, отдувается перед топами на всевозможных разносах, защищая команды. Но на самом деле, есть очень существенное отличие. Если о нем не задумываться, то поведение М2 менеджера может казаться тимлидам нелогичным.

Разница очень простая, но очень важная. М2 думает, как должно быть хорошо и правильно. Если он отбивает задачу в смежников, то не для защиты своих команд от переработок, а потому что считает, что это выгоднее для компании (или проекта) в целом. Например, экспертиза должны находиться в другом месте или смежники могут сделать быстрее, а уже горит. Если он отбивает задачу совсем, то, вероятно, считает, что она только навредит. Может, ROI плохой, может, не вписывается в целевую архитектуру, может, противоречит стратегии.

Вообще видение такое, что вокруг не враги, а люди, с ограниченными контекстами. И ты сам с ограниченным контекстом. И вам надо достичь какой-то общей большой цели, но вы каждый видите свои пути. И вот надо всем объяснить, что ты не враг. Показать свой контекст. Убедить их показать свои тебе. И дальше договариваться, как же поступить оптимально. И это непрерывная работа.

Но иногда, даже держа в голове эти мысли, тимлид может решить, что М2 ведёт какую-то хитрую политическую игру, ведь решения всё ещё не логичны. Может и так. Но скорее всего, М2 просто подумал на много шагов вперед и учел риски, которые тимлиду даже в голову не приходили (он банально меньше знает вширь, но больше вглубь, да).

В целом, я, например, даже пытаюсь объяснять свои решения тимлидам. Но, во-первых, не всегда об этом думаю, во-вторых, не всегда нахожу силы, в-третьих, всё равно иногда вижу реакцию типа "ага, ну я понял, как _на_самом_деле_, но буду транслировать твою версию, я тебя раскусил".

М2 это работать почти никак не мешает. Просто иногда тимлидов заносит и надо их поправлять. А вот тимлиду изменение майндсета на М2 может помочь вырасти на следующую ступеньку.

P.S.:
Kind reminder, что вы можете связаться со мной через бота в описании, он звездочек не просит.
Фабричный методэто порождающий паттерн проектирования, который определяет общий интерфейс для создания объектов в суперклассе, позволяя подклассам изменять тип создаваемых объектов.

from __future__ import annotations
from abc import ABC, abstractmethod


class Creator(ABC):
"""
Класс Создатель объявляет фабричный метод, который должен возвращать объект
класса Продукт. Подклассы Создателя обычно предоставляют реализацию этого
метода.
"""

@abstractmethod
def factory_method(self):
"""
Обратите внимание, что Создатель может также обеспечить реализацию
фабричного метода по умолчанию.
"""
pass

def some_operation(self) -> str:
"""
Также заметьте, что, несмотря на название, основная обязанность
Создателя не заключается в создании продуктов. Обычно он содержит
некоторую базовую бизнес-логику, которая основана на объектах Продуктов,
возвращаемых фабричным методом. Подклассы могут косвенно изменять эту
бизнес-логику, переопределяя фабричный метод и возвращая из него другой
тип продукта.
"""

# Вызываем фабричный метод, чтобы получить объект-продукт.
product = self.factory_method()

# Далее, работаем с этим продуктом.
result = f"Creator: The same creator's code has just worked with {product.operation()}"

return result


"""
Конкретные Создатели переопределяют фабричный метод для того, чтобы изменить тип
результирующего продукта.
"""


class ConcreteCreator1(Creator):
"""
Обратите внимание, что сигнатура метода по-прежнему использует тип
абстрактного продукта, хотя фактически из метода возвращается конкретный
продукт. Таким образом, Создатель может оставаться независимым от конкретных
классов продуктов.
"""

def factory_method(self) -> Product:
return ConcreteProduct1()


class ConcreteCreator2(Creator):
def factory_method(self) -> Product:
return ConcreteProduct2()


class Product(ABC):
"""
Интерфейс Продукта объявляет операции, которые должны выполнять все
конкретные продукты.
"""

@abstractmethod
def operation(self) -> str:
pass


"""
Конкретные Продукты предоставляют различные реализации интерфейса Продукта.
"""


class ConcreteProduct1(Product):
def operation(self) -> str:
return "{Result of the ConcreteProduct1}"


class ConcreteProduct2(Product):
def operation(self) -> str:
return "{Result of the ConcreteProduct2}"


def client_code(creator: Creator) -> None:
"""
Клиентский код работает с экземпляром конкретного создателя, хотя и через
его базовый интерфейс. Пока клиент продолжает работать с создателем через
базовый интерфейс, вы можете передать ему любой подкласс создателя.
"""

print(f"Client: I'm not aware of the creator's class, but it still works.\n"
f"{creator.some_operation()}", end="")


if __name__ == "__main__":
print("App: Launched with the ConcreteCreator1.")
client_code(ConcreteCreator1())
print("\n")

print("App: Launched with the ConcreteCreator2.")
client_code(ConcreteCreator2())
💛 Кто хочет заработать миллион долларов? Ловите идеи ИИ стартапов

Пообщался с Клодом на тему идей для ИИ-сервисов. В промпте попросил изучить опыт Y Combinator и Product Hunt, и при описании идей помнить про product market fit (соответствие продукта рынку, далее - PMF)

Ответы:

Самый быстрорастущий сегмент - инструменты для улучшения существующих AI-систем компаний
Рекомендую сфокусироваться на создании инструментов, которые усиливают существующие AI-системы, а не конкурируют с ними напрямую. Это главный тренд Y Combinator W25.


Основываясь на анализе успешных кейсов из Product Hunt и Y Combinator, вот 15 идей продуктов, усиливающих существующие AI-системы с доказанным product-market fit:

AI Output Validator
Проблема: Компании используют ChatGPT/Claude для генерации контента, но 30% выходных данных содержат фактические ошибки или галлюцинации
Решение: API-сервис, который проверяет AI-генерированный контент на факты, консистентность и соответствие бренду
Модель: $49/месяц для стартапов, $299/месяц enterprise
PMF: Browser Use получил 28,000 загрузок за неделю, показывая спрос на инструменты контроля AI

Prompt Performance Analytics
Проблема: Компании тратят тысячи долларов на API OpenAI/Anthropic, не понимая какие промпты работают
Решение: Дашборд отслеживающий эффективность промптов, A/B тестирование, оптимизация затрат
Модель: 2% от сэкономленных API-затрат
PMF: 25% YC стартапов используют AI для 95% кода - им критически нужна оптимизация

AI Agent Memory Layer
Проблема: AI-агенты "забывают" контекст между сессиями, компании теряют историю взаимодействий
Решение: Универсальная память для любых AI-агентов с векторным поиском и контекстным извлечением
Модель: $0.001 за сохраненное взаимодействие
PMF: Abundant из YC W25 показал спрос на улучшение AI-агентов

Multi-AI Orchestrator
Проблема: Компании используют 5-10 разных AI-инструментов (ChatGPT для текста, Midjourney для изображений, ElevenLabs для голоса)
Решение: Единый API orchestrating между всеми AI-сервисами с оптимизацией маршрутизации
Модель: $99/месяц + 10% markup на API-вызовы
PMF: Melies (из анализа Product Hunt) интегрирует множество AI для создания фильмов

AI Cost Guard
Проблема: Неконтролируемые AI-агенты могут сжечь $10,000+ за ночь на API-вызовах
Решение: Real-time мониторинг и автоматические лимиты для всех AI API с алертами
Модель: Freemium с $29/месяц Pro для неограниченных endpoints
PMF: С ростом "vibe coding" критически важен контроль затрат

Compliance Filter for AI
Проблема: AI генерирует контент нарушающий GDPR, HIPAA или корпоративные политики
Решение: Middleware фильтрующий input/output AI на соответствие регуляциям
Модель: $199/месяц для healthcare, $499/месяц для финансов
PMF: YC W25 показал рост AI в традиционных индустриях требующих compliance

AI Training Data Marketplace
Проблема: Компании хотят fine-tune модели, но не имеют качественных датасетов
Решение: Маркетплейс проверенных, лицензированных данных для обучения по индустриям
Модель: 20% комиссия с транзакций
PMF: FLUX успех показал спрос на специализированные модели

Prompt Templates Store
Проблема: Каждая компания изобретает велосипед с промптами для типовых задач
Решение: Магазин проверенных, оптимизированных промптов с метриками эффективности
Модель: $4.99 за промпт или $49/месяц безлимит
PMF: Flowdrafter показал что простые, focused решения побеждают

AI Output Humanizer
Проблема: AI-контент легко детектируется и выглядит "роботизированным"
Решение: Сервис добавляющий человеческие нюансы в AI-генерированный контент
Модель: $0.02 за 100 слов
PMF: С ростом AI-детекторов критически важна "гуманизация"

Cross-AI Context Bridge
Проблема: Переключение между ChatGPT, Claude, Gemini требует копирования всего контекста
Решение: Браузерное расширение синхронизирующее контекст между всеми AI-чатами
Модель: $9.99/месяц

PMF: Пользователи Product Hunt активно используют множество AI одновременно
Please open Telegram to view this post
VIEW IN TELEGRAM
AI Performance Benchmarker
Проблема: Непонятно какая модель лучше для конкретной бизнес-задачи
Решение: Автоматическое тестирование задачи на 10+ моделях с отчетом
Модель: $19 за бенчмарк
PMF: Artificial Analysis популярность показывает спрос на сравнения

Smart AI Router
Проблема: GPT-4o избыточен для простых задач, но GPT-3.5 недостаточен для сложных
Решение: Автоматический роутинг запросов к оптимальной модели по цене/качеству
Модель: Экономим 40% затрат, берем 50% от экономии
PMF: При $10-30/месяц за AI критична оптимизация

AI Hallucination Insurance
Проблема: Бизнес боится использовать AI для критичных задач из-за риска ошибок
Решение: Страховка покрывающая убытки от AI-галлюцинаций с проверкой выходных данных
Модель: 2% от объема обрабатываемых AI транзакций
PMF: Новая ниша с огромным потенциалом для B2B

Collaborative AI Workspace
Проблема: Команды не могут эффективно работать с AI вместе, дублируют промпты
Решение: Shared workspace для командной работы с AI, история, шаблоны, права доступа
Модель: $15/пользователь/месяц
PMF: YC тренд на AI-first команды требует коллаборации

AI Output Version Control
Проблема: Компании теряют track изменений в AI-генерированном контенте
Решение: Git для AI outputs с diff, merge, rollback функциональностью
Модель: $29/месяц для команд до 10 человек
PMF: С 95% AI-генерированным кодом критичен контроль версий


Сохрани - миллионером станешь! ну или хотябы тысячанером😄


Если есть желание инвестировать в ИИ-проекты - просьба написать мне @KottAlex
Please open Telegram to view this post
VIEW IN TELEGRAM