НАЙДЕН ОПТИМАЛЬНЫЙ СПОСОБ ПРИНЯТИЯ РЕШЕНИЙ
Это потрясающее открытие имеет колоссальные перспективы.
Оно может принципиально изменить способ принятия решений в бизнесе, социальной сфере, госуправлении и даже в организации государственной власти.
Повышение качества управления (важнейший фактор в конкурентной борьбе) - это улучшение соотношения удачно принятых (то есть правильных) решений к общему количеству принимаемых решений.
Сегодня, согласно McKinsey, как минимум, половина управленческих решений оказываются не верными, не смотря на все усилия науки и управленческих практик - см. например, здесь, здесь, здесь и здесь.
И хотя человечество уже вплотную подошло к необходимости включения в процесс принятия решений «социального интеллекта» («social intelligence»), методы краудсорсинга, «интеллекта роя» и пр. пока что не смогли изменить удручающую ситуацию с неумением людей найти оптимальную схему принятия сложных решений.
Прорыв произошел довольно неожиданно. На стыке нейронауки, теории информации, теории коллективного поведения и статистической физики удалось построить и верифицировать на большом объеме экспериментальных данных динамическую, стохастическую, распределенную модель принятия решений.
Природа, в ходе эволюции, смогла создать так и не превзойденные современной наукой механику и биохимию живых существ. Логично предположить, что и в вопросе поиска наилучшей схемы принятия решений нейронами головного мозга природа опережает достигнутый уровень развития науки.
Новое исследование Центра Биосоциальных Сложных Систем и «Института сумасшедших идей» в Сата-Фе не только определило схему принятия решений нейронами головного мозга, но и доказало, что эта схема является оптимальной для любых коллективных вычислений, производимых сетью интеллектуальных агентов.
Эта схема, названная «кодирующая двойственность» состоит их 2х этапов.
— Первый этап более всего похож на то, что я, в свое время, назвал термином синтеллектуальный краудсорсинг - отличающийся от традиционного краудсорсинга, в первую очередь, ограничением на взаимодействие интеллектуальных агентов в начальной фазе процесса принятия решения.
Цель данного этапа – накопление информации в условиях подавления информационного шума.
— Второй этап – это «формирование консенсуса», в ходе которого информация быстро распространяется от «знающих» нейронов (имеющих доступ к информации) к множеству остальных участвующих в схеме нейронов, резко увеличивая этим избыточность в системе.
Принципиальным для эффективности схемы является то, что этапы накопления и консенсуса, отличаются разными временными шкалами.
#Нейронаука #ПринятиеРешений #Краудсорсинг
Это потрясающее открытие имеет колоссальные перспективы.
Оно может принципиально изменить способ принятия решений в бизнесе, социальной сфере, госуправлении и даже в организации государственной власти.
Повышение качества управления (важнейший фактор в конкурентной борьбе) - это улучшение соотношения удачно принятых (то есть правильных) решений к общему количеству принимаемых решений.
Сегодня, согласно McKinsey, как минимум, половина управленческих решений оказываются не верными, не смотря на все усилия науки и управленческих практик - см. например, здесь, здесь, здесь и здесь.
И хотя человечество уже вплотную подошло к необходимости включения в процесс принятия решений «социального интеллекта» («social intelligence»), методы краудсорсинга, «интеллекта роя» и пр. пока что не смогли изменить удручающую ситуацию с неумением людей найти оптимальную схему принятия сложных решений.
Прорыв произошел довольно неожиданно. На стыке нейронауки, теории информации, теории коллективного поведения и статистической физики удалось построить и верифицировать на большом объеме экспериментальных данных динамическую, стохастическую, распределенную модель принятия решений.
Вопросы, поставленные авторами исследования, были достаточно сумасшедшими, равно как и 100%но научными:
-- как принимаются решения мозгом?
-- на уровне отдельных нейронов или огромной сетью коммуницирующих нейронов?
-- какова схема этого - как это происходит, и как организован процесс принятия решений?
Природа, в ходе эволюции, смогла создать так и не превзойденные современной наукой механику и биохимию живых существ. Логично предположить, что и в вопросе поиска наилучшей схемы принятия решений нейронами головного мозга природа опережает достигнутый уровень развития науки.
Новое исследование Центра Биосоциальных Сложных Систем и «Института сумасшедших идей» в Сата-Фе не только определило схему принятия решений нейронами головного мозга, но и доказало, что эта схема является оптимальной для любых коллективных вычислений, производимых сетью интеллектуальных агентов.
Эта схема, названная «кодирующая двойственность» состоит их 2х этапов.
— Первый этап более всего похож на то, что я, в свое время, назвал термином синтеллектуальный краудсорсинг - отличающийся от традиционного краудсорсинга, в первую очередь, ограничением на взаимодействие интеллектуальных агентов в начальной фазе процесса принятия решения.
Цель данного этапа – накопление информации в условиях подавления информационного шума.
— Второй этап – это «формирование консенсуса», в ходе которого информация быстро распространяется от «знающих» нейронов (имеющих доступ к информации) к множеству остальных участвующих в схеме нейронов, резко увеличивая этим избыточность в системе.
Принципиальным для эффективности схемы является то, что этапы накопления и консенсуса, отличаются разными временными шкалами.
#Нейронаука #ПринятиеРешений #Краудсорсинг
Frontiers
Dual Coding Theory Explains Biphasic Collective Computation in Neural Decision-Making
A central question in cognitive neuroscience is how unitary, coherent decisions at the whole organism level can arise from the distributed behavior of a large population of neurons with only partially overlapping information. We address this issue by studying…
Я НАЧАЛЬНИК, ТЫ – AI
В прошлом посте была указана открытая ссылка за пэйвол HBR на последний номер этого журнала.
И поскольку доступ к этому номеру у вас уже есть, хочу порекомендовать еще один интересный материал из него – короткая статья «Алгоритмы видимость контроля».
В ней рассказывается про весьма неприятную историю, связанную с AI, - про которую почти не пишут. Речь идет о т.н. Эффекте «неприятия алгоритма»:
Суть этого «неприятия» в следующем.
Люди предъявляют к алгоритмам (решениям, принимаемым машинами) куда более жесткие требования, чем к самим себе. И поскольку почти любой алгоритм не идеален, люди отказываются использовать алгоритм, ссылаясь на его недостаточную точность и надежность.
Другими словами, себе-любимому мы готовы простить даже бОльшую ошибку, чем компьютеру.
В результате, человек оставляет за собой работу, куда лучше выполняемую компьютером. А бизнес продолжает терять на этом кучу денег, эффективность не растет и, вообще, прогресс не идет, куда следует.
Например, вот такая ситуация:
(1) врач в состоянии самостоятельно поставить правильный диагноз по снимку с вероятностью 60%,
(2) ему дается AI, который якобы будет ставить правильные диагнозы по снимкам с вероятностью 90%;
(3) на практике же получается, что AI ставит правильные диагнозы с вероятностью «только» 80%.
В результате, врач заявляет, что не нужен ему такой плохой AI, который не дотягивает до обещанной точности диагностики. Более того, раз он не может обеспечить 90% точность диагностики, ему вообще нельзя доверять.
В статье HBR описываются эксперименты, проводимые с целью найти способ борьбы с «неприятием алгоритма».
Согласно экспериментам, неприятие снижается, если человеку дать возможность подправлять решения AI.
Бред, конечно! А что делать? Иначе человек не может ничего с собой поделать и будет всячески дискредитировать и саботировать решения AI.
Цена вопроса здесь колоссальная. Эксперты считают, что «неприятию алгоритма» человечество обязано многими миллиардами, теряемыми, например, в ритейле из-за того, что там, по-прежнему, предпочитают опираться на человеческий прогноз при пополнении запасов, а не на куда более точные прогнозы уже существующих AI систем.
- - - - -
Легко представить, что для борьбы с «неприятием алгоритма» разработчики AI начнут предусматривать спецтрюки. Например, человек будет считать, что корректирует решения AI, а на самом деле, AI просто будет в этот момент играть с человеком в поддавки, давая ему ложное ощущение, что тот – главный.
Такой путь может закончиться плохо. И я бы сильно подумал, прежде чем пойти на такой риск.
Так за кем должно оставаться финальное решение???
N.B. От ответа на этот вопрос, в частности, зависит юридическая легализация управляемых AI авто и даже то, решится ли одна из сторон нанести ядерный удар.
Такова важность решения вопроса о «неприятии алгоритма».
Статья ссылается на это исследование.
Но есть и более новое.
#AI #ПринятиеРешений #Прогнозирование #НеприятиеАлгоритма
В прошлом посте была указана открытая ссылка за пэйвол HBR на последний номер этого журнала.
И поскольку доступ к этому номеру у вас уже есть, хочу порекомендовать еще один интересный материал из него – короткая статья «Алгоритмы видимость контроля».
В ней рассказывается про весьма неприятную историю, связанную с AI, - про которую почти не пишут. Речь идет о т.н. Эффекте «неприятия алгоритма»:
-- истоки которого коренятся у нас в сознании, но до конца не понятно – почему, и потому не очень ясно, как с этим бороться;
-- последствия которого определяют успех/неуспех и, соответственно, – применение/неприменение той или иной AI технологии в конкретных индустриях и областях личного и общественного использования.
Суть этого «неприятия» в следующем.
Люди предъявляют к алгоритмам (решениям, принимаемым машинами) куда более жесткие требования, чем к самим себе. И поскольку почти любой алгоритм не идеален, люди отказываются использовать алгоритм, ссылаясь на его недостаточную точность и надежность.
Другими словами, себе-любимому мы готовы простить даже бОльшую ошибку, чем компьютеру.
Это смахивает на наше свойство «в чужом глазу соломину видеть, а в своём — бревна не замечать».
В результате, человек оставляет за собой работу, куда лучше выполняемую компьютером. А бизнес продолжает терять на этом кучу денег, эффективность не растет и, вообще, прогресс не идет, куда следует.
Например, вот такая ситуация:
(1) врач в состоянии самостоятельно поставить правильный диагноз по снимку с вероятностью 60%,
(2) ему дается AI, который якобы будет ставить правильные диагнозы по снимкам с вероятностью 90%;
(3) на практике же получается, что AI ставит правильные диагнозы с вероятностью «только» 80%.
В результате, врач заявляет, что не нужен ему такой плохой AI, который не дотягивает до обещанной точности диагностики. Более того, раз он не может обеспечить 90% точность диагностики, ему вообще нельзя доверять.
В статье HBR описываются эксперименты, проводимые с целью найти способ борьбы с «неприятием алгоритма».
Согласно экспериментам, неприятие снижается, если человеку дать возможность подправлять решения AI.
Т.е. этот самый врач, у которого точность диагноза на треть хуже, чем у AI, будет подправлять диагностику AI.
Бред, конечно! А что делать? Иначе человек не может ничего с собой поделать и будет всячески дискредитировать и саботировать решения AI.
Цена вопроса здесь колоссальная. Эксперты считают, что «неприятию алгоритма» человечество обязано многими миллиардами, теряемыми, например, в ритейле из-за того, что там, по-прежнему, предпочитают опираться на человеческий прогноз при пополнении запасов, а не на куда более точные прогнозы уже существующих AI систем.
- - - - -
Легко представить, что для борьбы с «неприятием алгоритма» разработчики AI начнут предусматривать спецтрюки. Например, человек будет считать, что корректирует решения AI, а на самом деле, AI просто будет в этот момент играть с человеком в поддавки, давая ему ложное ощущение, что тот – главный.
Такой путь может закончиться плохо. И я бы сильно подумал, прежде чем пойти на такой риск.
Так за кем должно оставаться финальное решение???
N.B. От ответа на этот вопрос, в частности, зависит юридическая легализация управляемых AI авто и даже то, решится ли одна из сторон нанести ядерный удар.
Такова важность решения вопроса о «неприятии алгоритма».
Статья ссылается на это исследование.
Но есть и более новое.
#AI #ПринятиеРешений #Прогнозирование #НеприятиеАлгоритма
Ssrn
Overcoming Algorithm Aversion: People Will Use Imperfect Algorithms If They Can (Even Slightly) Modify Them
Although evidence-based algorithms consistently outperform human forecasters, people often fail to use them after learning that they are imperfect, a phenomenon
Упертые несогласные кардинально повышают качество коллективных решений.
Этот 3й за полгода удивительный научный прорыв https://goo.gl/eqdpo6 подводит нас все ближе к открытию нового класса законов природы.
1) В июльском посте «Найден оптимальный способ принятия решений» https://t.iss.one/theworldisnoteasy/282 я рассказал о прорывном открытии на стыке нейронауки, теории информации, теории коллективного поведения и статистической физики.
Исследователям Центра Биосоциальных Сложных Систем (С4) удалось построить и верифицировать на большом объеме экспериментальных данных динамическую, стохастическую, распределенную модель принятия решений.
С помощью этой модели была выявлена схема организации процесса принятия решений в мозге огромной сетью коммуницирующих нейронов, названная авторами «кодирующая двойственность».
2) А в ноябре состоялся другой научный прорыв, о котором я писал в посте «На пороге открытия нового класса законов природы» https://t.iss.one/theworldisnoteasy/357.
Центр С4 опубликовал революционные результаты нового исследования, объясняющего, зачем адаптивные системы организуются во все более сложные укрупняющиеся структуры (от колоний бактерий до государств у людей).
Было показано, что создание иерархических многоуровневых структур – это закон природы, типа 2го закона термодинамики для живых систем. Это происходит для повышения эффективности обработки информации при коллективных вычислениях, осуществляемых элементами системы в условиях большой информационной зашумленности и разброса мнений.
Цель всего этого – улучшение предсказаний будущего, обеспечивающее максимальную адаптационную способность системы.
3) 1ое прорывное исследование открыло общую схему организации процесса принятия коллективных решений в сетях нейронов.
2й революционный прорыв распространил эту схему на принятие коллективных решений во всей живой природе (стая, племя, общество) и выявил ключевой механизм, отличающий процесс коллективного взаимодействия элементов в био-социальных (живых) и физических (неживых) системах. Этот механизм - создание иерархической многоуровневой структуры обработки информации, принятия решений и управления.
Только что опубликованное 3е исследование, с помощью еще более сложной и точной модели, выявило основной модельный фактор, повышающий качество коллективных решений, вырабатываемых вышеупомянутым механизмом, реализующим вышеупомянутую схему. После чего выявленный модельный фактор был проверен в полевых условиях на процессах принятия решений в сообществах обезьян (в этом смысле, жутко похожих на нас).
Выявленным ключевым фактором оказалась численность упертых несогласных, - имеющих собственное мнение, не вписывающееся в агрегированный итог иерархического сбора мнений, и не готовых от него быстро отказаться даже под угрозой трепки от более сильных вожаков, признаваемых большинством за власть.
Чем больше упертых несогласных – тем выше качество коллективных решений. И похоже, это новый закон природы.
P.S. Снаряды ложатся все кучнее. Революционное открытие прошлого года в области эффективности краудсорсинга говорит, по сути, о том же - наибольшее вознаграждение в краудсорсинге должно выдаваться упертым несогласным, оказавшимся в итоге правыми (см. «Особое мнение – 2я революция в краудсорсинге» https://t.iss.one/theworldisnoteasy/243)
Новое исследование https://goo.gl/6C7xB8 (сложно и за пейволом; кому нужен текст, пишите)
Популярно о нем: https://goo.gl/EN3J2u и https://goo.gl/pWdtVJ (оба по 1 мин)
Эссе об этом направлении работ С4 «Как природа решает проблемы с помощью вычислений» https://goo.gl/3b71TR (5 мин)
#ЭволюционнаяБиология #КоллективныеВычисления #Нейронаука #ПринятиеРешений #Краудсорсинг
Этот 3й за полгода удивительный научный прорыв https://goo.gl/eqdpo6 подводит нас все ближе к открытию нового класса законов природы.
1) В июльском посте «Найден оптимальный способ принятия решений» https://t.iss.one/theworldisnoteasy/282 я рассказал о прорывном открытии на стыке нейронауки, теории информации, теории коллективного поведения и статистической физики.
Исследователям Центра Биосоциальных Сложных Систем (С4) удалось построить и верифицировать на большом объеме экспериментальных данных динамическую, стохастическую, распределенную модель принятия решений.
С помощью этой модели была выявлена схема организации процесса принятия решений в мозге огромной сетью коммуницирующих нейронов, названная авторами «кодирующая двойственность».
2) А в ноябре состоялся другой научный прорыв, о котором я писал в посте «На пороге открытия нового класса законов природы» https://t.iss.one/theworldisnoteasy/357.
Центр С4 опубликовал революционные результаты нового исследования, объясняющего, зачем адаптивные системы организуются во все более сложные укрупняющиеся структуры (от колоний бактерий до государств у людей).
Было показано, что создание иерархических многоуровневых структур – это закон природы, типа 2го закона термодинамики для живых систем. Это происходит для повышения эффективности обработки информации при коллективных вычислениях, осуществляемых элементами системы в условиях большой информационной зашумленности и разброса мнений.
Цель всего этого – улучшение предсказаний будущего, обеспечивающее максимальную адаптационную способность системы.
3) 1ое прорывное исследование открыло общую схему организации процесса принятия коллективных решений в сетях нейронов.
2й революционный прорыв распространил эту схему на принятие коллективных решений во всей живой природе (стая, племя, общество) и выявил ключевой механизм, отличающий процесс коллективного взаимодействия элементов в био-социальных (живых) и физических (неживых) системах. Этот механизм - создание иерархической многоуровневой структуры обработки информации, принятия решений и управления.
Только что опубликованное 3е исследование, с помощью еще более сложной и точной модели, выявило основной модельный фактор, повышающий качество коллективных решений, вырабатываемых вышеупомянутым механизмом, реализующим вышеупомянутую схему. После чего выявленный модельный фактор был проверен в полевых условиях на процессах принятия решений в сообществах обезьян (в этом смысле, жутко похожих на нас).
Выявленным ключевым фактором оказалась численность упертых несогласных, - имеющих собственное мнение, не вписывающееся в агрегированный итог иерархического сбора мнений, и не готовых от него быстро отказаться даже под угрозой трепки от более сильных вожаков, признаваемых большинством за власть.
Чем больше упертых несогласных – тем выше качество коллективных решений. И похоже, это новый закон природы.
P.S. Снаряды ложатся все кучнее. Революционное открытие прошлого года в области эффективности краудсорсинга говорит, по сути, о том же - наибольшее вознаграждение в краудсорсинге должно выдаваться упертым несогласным, оказавшимся в итоге правыми (см. «Особое мнение – 2я революция в краудсорсинге» https://t.iss.one/theworldisnoteasy/243)
Новое исследование https://goo.gl/6C7xB8 (сложно и за пейволом; кому нужен текст, пишите)
Популярно о нем: https://goo.gl/EN3J2u и https://goo.gl/pWdtVJ (оба по 1 мин)
Эссе об этом направлении работ С4 «Как природа решает проблемы с помощью вычислений» https://goo.gl/3b71TR (5 мин)
#ЭволюционнаяБиология #КоллективныеВычисления #Нейронаука #ПринятиеРешений #Краудсорсинг
phys.org
How living systems compute solutions to problems
How do decisions get made in the natural world? One possibility is that the individuals or components in biological systems collectively compute solutions to challenges they face in their environments. ...
Черные лебеди, как новый закон природы.
Важнейшим последствием продолжения прорывной серии открытий центра С4 (о чем я писал вчера), может стать выработка стратегий предотвращения «Черных лебедей».
И поскольку у вас могут не дойти руки:
— до рекомендованного мною вчера эссе https://goo.gl/3b71TR
— до научных статей C4 https://goo.gl/DMjYRg
— до превосходных публичных лекций С4 https://goo.gl/mXaM8q , —
попробую выжать «сухой остаток» из этих сотен страниц и десятков часов видео на 2 мин. вашего чтения.
I) О «Черных лебедях» и коллективном поведении.
«Черные лебеди» возникают в результате коллективного поведения людей в предкритических ситуациях. Это относится к любым «Черным лебедям», - непредвиденные глобальные обвалы финансовых рынков, национальные и глобальные экономические кризисы, эпидемии схлопывания политических режимов, типа «Арабской весны».
Ключевых факторов того, взлетит ли новый «Черный лебедь» или все как-то утрясется без катастроф, два:
1) насколько близко подошла система к критической (переломной) точке - фазовому переходу системы;
2) в какую сторону: к критической точке или от нее подталкивает систему коллективное поведение.
Это похоже на толпу у обрыва над пропастью.
— Как поведет себя толпа?
— Будет ли она в результате сотен индивидуальных действий еще ближе приближаться к краю, а потом и просто выдавливать в пропасть людей?
— Или сумеет самоорганизоваться, начнет пятиться от края и тем самым предотвратит катастрофу?
Понять степень близости системы к критической точке – задача междисциплинарных исследований в соответствующей области: финансы и т.д. Этим занимаются в исследовательских центрах типа NECSI.
Понимание того, по каким схемам и с помощью каких механизмов формируются коллективные: поведение, действия, принятие решений – это задача исследований центра С4.
II) О большой войне, как новом законе природы
Исследования на матмоделях с проверкой на обезьянах позволило понять, как социальные и другие био-системы переходят из состояния А в Б. Например:
— Коллективное вычисление, выясняющее, кто в обезьяньей стае власть, требует множества драк с участием от 2х до 30+ особей.
— Маленькие драки часты, большие - редки.
— На модели с проверкой на практике удалось собрать данные о решениях отдельных особей присоединиться к драке.
— На основе этого определили число обезьян, чья склонность присоединиться к драке должна увеличиться, чтобы приблизить систему к критической точке (тотальная потасовка с непредсказуемым для стаи результатом).
— Оказалось, что требуется всего 3-5 особей, чтобы подтолкнуть систему к краю пропасти.
— Дальше определили, как самые статусные индивиды способны чуть ли ни в одиночку довести до тотальной драки.
И вот тут откровение!
Выяснилось, что катастрофа тотального боя как бы притягивает участников. А его последствия, при всей катастрофичности, позволяют решить иначе не решаемую задачу:
✔️ полностью переконфигурировать стаю в ситуации, когда окружающая среда меняется от известной до неизвестной.
Т.е. вот она причина того, что большой войны оказывается не миновать.
Оказывается, что «Черные лебеди» прилетают к нам не по собственной воле.
Это наше коллективное рассогласование с кардинально изменившейся средой так меняет наше поведение, что мы сами толкаем ситуацию в пропасть.
И это, похоже, еще один новый закон природы.
#ЭволюционнаяБиология #КоллективныеВычисления #Нейронаука #ПринятиеРешений #Краудсорсинг #ЧерныйЛебедь
Важнейшим последствием продолжения прорывной серии открытий центра С4 (о чем я писал вчера), может стать выработка стратегий предотвращения «Черных лебедей».
И поскольку у вас могут не дойти руки:
— до рекомендованного мною вчера эссе https://goo.gl/3b71TR
— до научных статей C4 https://goo.gl/DMjYRg
— до превосходных публичных лекций С4 https://goo.gl/mXaM8q , —
попробую выжать «сухой остаток» из этих сотен страниц и десятков часов видео на 2 мин. вашего чтения.
I) О «Черных лебедях» и коллективном поведении.
«Черные лебеди» возникают в результате коллективного поведения людей в предкритических ситуациях. Это относится к любым «Черным лебедям», - непредвиденные глобальные обвалы финансовых рынков, национальные и глобальные экономические кризисы, эпидемии схлопывания политических режимов, типа «Арабской весны».
Ключевых факторов того, взлетит ли новый «Черный лебедь» или все как-то утрясется без катастроф, два:
1) насколько близко подошла система к критической (переломной) точке - фазовому переходу системы;
2) в какую сторону: к критической точке или от нее подталкивает систему коллективное поведение.
Это похоже на толпу у обрыва над пропастью.
— Как поведет себя толпа?
— Будет ли она в результате сотен индивидуальных действий еще ближе приближаться к краю, а потом и просто выдавливать в пропасть людей?
— Или сумеет самоорганизоваться, начнет пятиться от края и тем самым предотвратит катастрофу?
Понять степень близости системы к критической точке – задача междисциплинарных исследований в соответствующей области: финансы и т.д. Этим занимаются в исследовательских центрах типа NECSI.
Понимание того, по каким схемам и с помощью каких механизмов формируются коллективные: поведение, действия, принятие решений – это задача исследований центра С4.
II) О большой войне, как новом законе природы
Исследования на матмоделях с проверкой на обезьянах позволило понять, как социальные и другие био-системы переходят из состояния А в Б. Например:
— Коллективное вычисление, выясняющее, кто в обезьяньей стае власть, требует множества драк с участием от 2х до 30+ особей.
— Маленькие драки часты, большие - редки.
— На модели с проверкой на практике удалось собрать данные о решениях отдельных особей присоединиться к драке.
— На основе этого определили число обезьян, чья склонность присоединиться к драке должна увеличиться, чтобы приблизить систему к критической точке (тотальная потасовка с непредсказуемым для стаи результатом).
— Оказалось, что требуется всего 3-5 особей, чтобы подтолкнуть систему к краю пропасти.
— Дальше определили, как самые статусные индивиды способны чуть ли ни в одиночку довести до тотальной драки.
И вот тут откровение!
Выяснилось, что катастрофа тотального боя как бы притягивает участников. А его последствия, при всей катастрофичности, позволяют решить иначе не решаемую задачу:
✔️ полностью переконфигурировать стаю в ситуации, когда окружающая среда меняется от известной до неизвестной.
Т.е. вот она причина того, что большой войны оказывается не миновать.
Оказывается, что «Черные лебеди» прилетают к нам не по собственной воле.
Это наше коллективное рассогласование с кардинально изменившейся средой так меняет наше поведение, что мы сами толкаем ситуацию в пропасть.
И это, похоже, еще один новый закон природы.
#ЭволюционнаяБиология #КоллективныеВычисления #Нейронаука #ПринятиеРешений #Краудсорсинг #ЧерныйЛебедь
Quanta Magazine
How Nature Solves Problems Through Computation
The evolutionary biologist Jessica Flack seeks the computational rules that groups of organisms use to solve problems.