ПРОСТОЙ И ПОНЯТНЫЙ МЕТОД ОЦЕНКИ ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ AI
Полагаю, что из-за обилия гиперссылок читать мои посты не просто.
Однако, ничего не могу поделать, - стремлюсь делиться с вами встречающимися мне не сильно известными источниками, высказывающими оригинальные и ценные мысли.
Делать как на большинстве каналов – давать в каждом посте единственный источник (речь о тематических постах, а не про обзоры ссылок) – мне крайне сложно. Источников, исчерпывающе раскрывающих интересные мне темы, не много.
Тем приятней представить вам один из таких источников – блог моего старого коллеги по IBM Ирвинга Владавски-Бергера, 37 лет отвечавшего в компании за поиск прорывных технологий будущего.
Мне очень понравился его пост о простом и понятном методе оценки экономической эффективности AI – оценивать, насколько внедрение AI сокращает косты (издержки).
Пост среднедлинный (7 тыс. символов) и, подобно моим постам, включает аж 20 гиперссылок. Зато мне теперь достаточно дать всего одну 😊
Пересказывать этот пост я не буду – только испорчу. Из уже отжатого внятного и весьма умного текста, как из песни, слова не выкинуть.
Лишь посоветую вам обратить внимание на следующие важные мысли:
1) Машинный интеллект является, по своей сути, технологией прогнозирования, поэтому экономический сдвиг будет сосредоточен вокруг снижения стоимости прогнозов.
2) Первым магистральными применениями AI уже стало снижение стоимости и улучшение качества индустриальных решений, целиком завязанных на прогнозах – погода, персональный маркетинг, пополнение запасов и т.п.
3) Второй очередью, как это уже было для арифметических, коммуникационных и поисковых компьютерных решений, прогнозные решения станут (и уже становятся) основой все новых и новых приложений для самых разнообразных бытовых и персональных применений.
4) Третьей (и самой главной) очередью пойдут (и к этому уже подбираются)приложения для принятия решений.
5) Принятие решений включает 2 элемента: прогнозирование (в чем AI хорош) и суждение (в чем AI крайне слаб и вряд ли когда-либо будет хорош). И поэтому для принятия решений нужно научиться использовать кентавров из машинного и человеческого интеллекта. А те люди, которые будут эффективно работать в составе таких кентавров, будут обладать самым ценным и востребованным практическим навыком будущего – имение делать правильные суждения на основании прогнозов AI.
#AI #Экономика
Полагаю, что из-за обилия гиперссылок читать мои посты не просто.
Однако, ничего не могу поделать, - стремлюсь делиться с вами встречающимися мне не сильно известными источниками, высказывающими оригинальные и ценные мысли.
Делать как на большинстве каналов – давать в каждом посте единственный источник (речь о тематических постах, а не про обзоры ссылок) – мне крайне сложно. Источников, исчерпывающе раскрывающих интересные мне темы, не много.
Тем приятней представить вам один из таких источников – блог моего старого коллеги по IBM Ирвинга Владавски-Бергера, 37 лет отвечавшего в компании за поиск прорывных технологий будущего.
Мне очень понравился его пост о простом и понятном методе оценки экономической эффективности AI – оценивать, насколько внедрение AI сокращает косты (издержки).
Пост среднедлинный (7 тыс. символов) и, подобно моим постам, включает аж 20 гиперссылок. Зато мне теперь достаточно дать всего одну 😊
Пересказывать этот пост я не буду – только испорчу. Из уже отжатого внятного и весьма умного текста, как из песни, слова не выкинуть.
Лишь посоветую вам обратить внимание на следующие важные мысли:
1) Машинный интеллект является, по своей сути, технологией прогнозирования, поэтому экономический сдвиг будет сосредоточен вокруг снижения стоимости прогнозов.
2) Первым магистральными применениями AI уже стало снижение стоимости и улучшение качества индустриальных решений, целиком завязанных на прогнозах – погода, персональный маркетинг, пополнение запасов и т.п.
3) Второй очередью, как это уже было для арифметических, коммуникационных и поисковых компьютерных решений, прогнозные решения станут (и уже становятся) основой все новых и новых приложений для самых разнообразных бытовых и персональных применений.
4) Третьей (и самой главной) очередью пойдут (и к этому уже подбираются)приложения для принятия решений.
5) Принятие решений включает 2 элемента: прогнозирование (в чем AI хорош) и суждение (в чем AI крайне слаб и вряд ли когда-либо будет хорош). И поэтому для принятия решений нужно научиться использовать кентавров из машинного и человеческого интеллекта. А те люди, которые будут эффективно работать в составе таких кентавров, будут обладать самым ценным и востребованным практическим навыком будущего – имение делать правильные суждения на основании прогнозов AI.
#AI #Экономика
Irving Wladawsky-Berger
The Simple, Economic Value of Artificial Intelligence
I recently attended a very interesting talk, - Exploring the Impact of Artificial Intelligence: Prediction versus Judgment, - by University of Toronto professor Avi Goldfarb. The talk was based on recent research conducted with his UoT colleagues Ajay Agrawal…