Малоизвестное интересное
68.2K subscribers
125 photos
2 videos
11 files
1.83K links
Авторский взгляд через призму новейших исследований на наше понимание реальности, человеческой сущности и того, как ИИ меняет их.




Рекламы, ВП и т.п. в канале нет.
Пишите на @karelovs
Download Telegram
ИИ за 5 минут решил задачу, на которую у эволюции ушло 50 млн лет.
Эксперимент по сравнению трёх типов разума: ИИ, муравьев и людей.

Результат эксперимента поражает и заставляет задуматься.
При решении задачи принятия решений в условиях неопределенности:
1. ИИ уступил интеллекту людей и роевому интеллекту муравьев.
2. Но ИИ решил задачу в 5 триллионов раз быстрее эволюции.
3. Однако, ИИ смог решить задачу лишь под руководством человека из-за двух крайне слабых компетенций в основе понимания, характерных для больших языковых моделей (LLM):
- вывод и конструирование моделей целеполагания биологических существ;
- вывод и конструирование моделей причинно-следственных связей в мире из собственного опыта воплощенного существования.

По сути, ИИ решил задачу, используя лишь «компетентность без понимания» - т.е. две имеющиеся у него чрезвычайно развитые компетенции: лингвистическую и вычислительную.

Но если у LLM появятся две вышеназванные компетенции в основе понимания, LLM качественно превзойдут любой биологический интеллект.

Эксперимент заключался в решении задачи принятия решений в условиях неопределенности из класса задач «бюджетирования»: ограничения ресурсов (времени), которые агент готов потратить на поиск лучшего варианта, прежде чем согласиться на худший.

Например.
• Вы въехали в плохо освещенную длинную стоянку автомобилей, выход из которой на противоположном от входа конце.
• Можно занять первое увиденное свободное место прямо у въезда на стоянку. Но тогда придется идти пешком через всю стоянку к выходу.
• Можно пытаться найти место как можно ближе к выходу. Но движение назад на стоянке запрещено. И если вы проехали последнее ближайшее к выходу свободное место, вы останетесь ни с чем – придется покинуть стоянку.
• Вам нужен алгоритм «бюджетирования».

С решением подобной задачи люди справляются уже много тысячелетий, а муравьи – миллионы лет.

В недавней работе был исследован алгоритм, используемый муравьями-ткачами для решения задачи этого класса. Он – результат, как минимум, 50 млн лет эволюции этого рода муравьев.

Я решил проверить, найдет ли LLM этот алгоритм? А может предложит другой?

Результат эксперимента вкратце описан в начале этого поста.

Подробности и тексты моего общения с иным разумом LLM, позволяющие увидеть:
✔️ интеллектуальный блеск и колоссальную мощь этого разума,
✔️ наряду с его интеллектуальной нищетой (в сравнении с биологическим разумом)


Продолжить чтение (еще 13 мин, если читать диалог с ИИ, в противном случае - лишь 2 мин):
• на Medium https://bit.ly/3NYbfH8
• на Дзене https://clck.ru/352V6X

#ИнойИнтеллект #Разум #Интеллект #Эволюция
​​GPT или кот – кто умнее?
Мы снова наступаем на грабли спесишизма.

Почти за год до появления на свет ChatGPT, я поставил вопрос – как людям преодолеть свой спесишизм (моральный антропоцентризм по отношению к нелюдям)? А спустя менее года мы уже оказались в мире, где, помимо людей, существует пара десятков высокоинтеллектуальных сущностей. И они – не люди, а большие языковые модели (LLM).

Спесишизм, дискриминирующий представителей других видов на основании, якобы, человеческого превосходства в разуме, сознании, познании и т.д.  —  фундаментальное свойство людей. Это не просто вшитый в сознание «софтвер», а часть нашего неизменимого «хардвера», который не перепрограммировать и не перепрошить.

Многие десятилетия даже в научном мейнстриме царило представление, что человек – венец творения, несопоставимый по своему разуму и наличию сознания ни с одним другим видом. Лишь относительно недавно среди исследователей стала громче звучать противоположная точка зрения.
• Что люди – вовсе не венец творения.
• Что разум видов, эволюционировавших в разной среде обитания (на земле, в воде и в воздухе) устроен сильно по-разному.
• И что сравнение с позиций антропоморфизма различных типов разума даже у видов, обитающих в одной среде (например, людей и котов), весьма условно и малопродуктивно. Ибо с точки зрения эволюционного превосходства, шансы котов выжить на необитаемом острове явно предпочтительней, чем у Робинзона Крузо.

И вот опять, с появлением иного типа разума, обитающего в цифровой среде, люди вновь наступают на грабли спесишизма.
Ведь отличие этого типа разума (а также наличие у него сознания в человеческом понимании), в силу его нематериальности (невоплощенности) и непонятного для нас способа формирования модели окружающего мира (при отсутствии какого-либо собственного чувственного опыта) должно быть куда больше, чем у людей и любых видов животных (обитающих в материальной, а не в цифрой среде).

Идеальным примером очередного наступания на грабли спесишизма стала опубликованная вчера Романом Ямпольским визуализация логики расхождений во мнениях среди ИИ-специалистов по вопросам экзистенциальных рисков ИИ для человечества.
• Первый же вопрос определяет развилку в оценках, станет ли ИИ “smarter” (разумней, умнее, интеллектуальней…) людей.
• И дальше в том же духе – попытки универсальной человеческой линейкой измерить вероятность «попыток ИИ превзойти людей» и «успешность таких попыток».

Постановка подобных вопросов ведет в никуда.
Мы не умнее LLM. И они, даже при достижении ими сверхчеловеческого уровня каких-либо умений, не будут умнее нас. Разум LLM совсем-совсем иной.
А еще точнее, - вообще не использовать по отношению к ним человекоориентированные понятия, типа разума и сознания.

А также стоит не забывать и о наших «меньших и больших братьях». Ибо и они – коты и дельфины, слоны и вороны …, - тоже ни в чем нам не уступают с эволюционной точки зрения. А во многом и превосходят.
#LLM #Интеллект #Разум #Сознание #Эволюция
​​Как выглядит божественная гениальность.
Фантастический поворот в раскрытии сокровенной тайны эволюции - исключительности разума людей.

Божественную гениальность отличает предельная по простоте и элегантности универсальность решения, - как, например, в «золотом сечении» и формуле Эйнштейна.
Новым примером этого может стать открытие способа триггерного усовершенствования разума наших далеких предков, позволившего им преодолеть пропасть, отделяющую разум животных от разума существ – носителей высшего
интеллекта на Земле. Звучать это открытие может, например, так – «не труд превратил обезьяну в человека, а способность отличать AB от AA, BB и BA».

Гипотеза о том, что наделяя людей качественно иным разумом, чем у животных, Творец (природа, эволюция, инопланетяне … - кому что нравится) использовал чрезвычайно простой, но немыслимо эффективный способ, за десятки лет исследований обросла разными версиями. Многие из них, так или иначе, предполагают, что для того, чтобы стать людьми, обезьянам не хватает рабочей памяти. Но структурные отличия мозга людей и высших обезьян невелики и относятся, в основном, к отделам, связанным с решением социальных задач. Это позволяет предположить, что различия между интеллектом человека и высших обезьян не столько качественные, сколько количественные: обезьяны обладают теми же умственными способностями, что и люди, но не в той же мере развитыми.
Если же все же искать качественное отличие, то есть, например, интересная гипотеза Дуайта Рида, что ключевое значение имеет объем кратковременной памяти, измеряемый количеством идей или концепций, с которыми «исполнительный компонент» рабочей памяти может работать одновременно. Малый объем кратковременной памяти не позволяет обезьянам мыслить рекурсивно, и в этом состоит важнейшее качественное отличие обезьяньего интеллекта от человеческого (примеры, как это работает см. в статье Александра Маркова).

Гипотезу Рида, как и другие похожие гипотезы, не просто доказать. Ведь и среди людей немало тех, кто подобно животным, не могут обдумывать комплексно, как часть единой логической операции, более одной, максимум двух идей. К тому же связь между величиной short-term working memory capacity и способностью к рекурсивному мышлению, поди экспериментально докажи.

Вот почему столь ценна новая гипотеза, экспериментально проверенная на животных и людях в исследовании Йохана Линда и коллег «Тест памяти на последовательности стимулов у человекообразных обезьян».

Воистину божественная гениальность предельно простого и элегантного решения в том, чтоб сформировать у животного способность различать последовательность стимулов, отличая, например, последовательность AB от AA, BB и BA.

Авторы показали, что шимпанзе бонобо не могут запомнить порядок двух стимулов даже после 2000 попыток. Тогда как 7-летний ребенок размер кратковременной памяти у которого примерно совпадает с шимпанзе, делает это с первых попыток.

Теперь, если эта гипотеза будет подтверждена в экспериментах с другими членами «великолепной четверки» высших земных разумов (врановыми, китообразными и осьминогами), механизм исключительности разума людей может перестать быть сокровенной тайной эволюции.

#Интеллект #Разум #Мозг #Эволюция
Google DeepMind сумела запустить когнитивную эволюцию роботов
Это может открыть путь к гибридному обществу людей и андроидов

1я ноябрьская ИИ-революция (Революция ChatGPT) началась год назад - в ноябре 2022. Она ознаменовала появление на планете нового носителя высшего интеллекта — цифрового ИИ, способного достичь (и, возможно, превзойти) людей в любых видах интеллектуальной деятельности.
Но не смотря на сравнимый с людьми уровень, этот новый носитель высшего интеллекта оказался абсолютно нечеловекоподобным.
Он принадлежит к классу генеративного ИИ больших языковых моделей, не умеющих (и в принципе не способных) не то что мечтать об электроовцах, но и просто мыслить и познавать мир, как это делают люди. И потому, даже превзойдя по уровню людей, он так и останется для человечества «чужим» — иным типом интеллекта, столь же непостижимым для понимания, как интеллект квинтян из романа Станислава Лема «Фиаско».

Причина нечеловекоподобия генеративных ИИ больших языковых моделей заключается в их кардинально иной природе.
✔️ Наш интеллект – результат миллионов лет когнитивной эволюции биологических интеллектуальных агентов, позволившей людям из животных превратиться в сверхразумные существа, построивших на Земле цивилизацию планетарного уровня, начавшую освоение космоса.
✔️ ИИ больших языковых моделей – продукт машинного обучения компьютерных программ на колоссальных объемах цифровых данных.

Преодолеть это принципиальное отличие можно, если найти ключ к запуску когнитивной эволюции ИИ.
И этот ключ предложен в ноябре 2023 инициаторами 2й ноябрьской ИИ-революции (Революции когнитивной эволюции ИИ) в опубликованном журналом Nature исследовании Google DeepMind.
• Движком когнитивной эволюции ИИ авторы предлагают сделать (как и у людей) социальное обучение — когда один интеллектуальный агент (человек, животное или ИИ) приобретает навыки и знания у другого путем копирования (жизненно важного для процесса развития интеллектуальных агентов).
• Ища вдохновение в социальном обучении людей, исследователи стремились найти способ, позволяющий агентам ИИ учиться у других агентов ИИ и у людей с эффективностью, сравнимой с человеческим социальным обучением.
• Команде исследователей удалось использовать обучение с подкреплением для обучения агента ИИ, способного идентифицировать новых для себя экспертов (среди других агентов ИИ и людей), имитировать их поведение и запоминать полученные знания в течение всего нескольких минут.

"Наши агенты успешно имитируют человека в реальном времени в новых контекстах, не используя никаких предварительно собранных людьми данных. Мы определили удивительно простой набор ингредиентов, достаточный для культурной передачи, и разработали эволюционную методологию для ее систематической оценки. Это открывает путь к тому, чтобы культурная эволюция играла алгоритмическую роль в развитии искусственного общего интеллекта", - говорится в исследовании.

Запуск когнитивной эволюции ИИ позволит не только создать «человекоподобный ИИ» у роботов – андроидов, но и разрешить при их создании Парадокс Моравека (высококогнитивные процессы требуют относительно мало вычислений, а низкоуровневые сенсомоторные операции требуют огромных вычислительных ресурсов) и Сверхзадачу Минского (произвести обратную разработку навыков, получаемых в процессе передачи неявных знаний - невербализованных и, часто, бессознательных)

Т.о. не будет большим преувеличением сказать, что 2я ноябрьская революция ИИ открывает путь к гибридному обществу людей и андроидов, – многократно описанному в фантастических романах, но до сих пор остававшемуся практически нереализуемым на ближнем временном горизонте.

Подробный разбор вопросов когнитивной эволюции путем копирования, а также революционного подхода к ее запуску, предложенного Google DeepMind, см. в моем новом лонгриде (еще 10 мин чтения):
- на Medium https://bit.ly/486AfEN
- на Дзене https://clck.ru/36wWQc
#ИИ #Интеллект #Разум #Эволюция #Культура #АлгокогнитивнаяКультура #Роботы #ККЭ
Интеллект из хаоса: как сложные системы рождают разум.
Нейросети могут научиться думать и без человеческого опыта.

Мы до сих пор не знаем, как рождается интеллект - любой интеллект:
• от милипизерного интеллекта крохотной Нематоды с ее 300 нейронами
• до интеллекта венца природы Homo sapiens с его 76 млрд нейронов.
С появлением генеративного интеллекта машин, этот вопрос не только не прояснился, а лишь еще больше запутался.
Теперь мы не знаем, как рождается
✔️ не только, естественный (биологический) интеллект,
✔️ но и искусственный (машинный)
интеллект тоже.
Ибо единственное, что мы до сих пор знали про рождение интеллекта у моделей генИИ, - что он каким-то загадочным образом появляется в результате способности моделей предсказывать следующий токен (напр. символ или слово). Для этого модель использует колоссальных объемов статистику вероятностей встречающихся паттернов токенов, извлекаемую ею из предоставленных ей гигантских корпусов обучающих данных.

Так что ж получается – интеллект рождается из данных?
И достаточно, собрав чертову тучу данных, заложить в машину логические правила извлечения из них статистики паттернов?
А потом вуаля, -
интеллект сам заведется, как тараканы на немытой кухне?
Не совсем так.

Новая весьма интересная работа молодых исследователей универов Йеля, Нортуэстерна и Айдахо выносит ответ на этот вопрос в свой заголовок - интеллект возникает на грани хаоса.

Заинтересованный читатель может продолжить чтение о том,
• что и как было сделано авторами работы «Интеллект на грани хаоса»,
• каковы 2 главных вывода этого исследования,
• какая интригующая эвристическая гипотеза напрашивается из этой работы,
• что думают мои персональные ИИ-консультанты по поводу моей гипотезы и прочих высказанных мною в тексте поста спекулятивных предположений, выходящих за границы современной науки, -
на платформах Boosty, Patreon и VK (в разделе для подписчиков моих лонгридов)

https://boosty.to/theworldisnoteasy/posts/7139c66c-ff70-4a2b-a5cc-e8ef870041af
https://www.patreon.com/posts/intellekt-iz-kak-113793549
https://vk.com/@-226218451-intellekt-iz-haosa-kak-slozhnye-sistemy-rozhdaut-razum

#Интеллект #Хаос