Малоизвестное интересное
65K subscribers
101 photos
1 video
11 files
1.81K links
Авторский канал Сергея Карелова о самом важном на фронтирах науки и технологий, что кардинально изменит людей и общество в ближайшие 10 лет.




Рекламы, ВП и т.п. в канале нет.
Пишите на @karelovs
Download Telegram
DARPA проиграла. А Алла Пугачева оказалась права
В мае я рассказывал, что DARPA пытается победить «глубокие фейки» (подмена лиц на видео), но, похоже, что эта битва уже проиграна. Спустя 4 месяца это окончательно подтвердилось. За широкое применение технологий «глубоких фейков» проголосовала индустрия развлечений.

Менее чем за год свершился ракетообразный взлет популярности этого класса технологий:
- от вставки лиц знаменитостей в порно-роликах;
- через создание фейковых видео-новостей;
- до превращения в один из самых прикольных и креативных видео-эффектов при создании музыкальных клипов.

Угнаться за креативом индустрии развлечений вояки из DARPA не смогут. А профи из креативных студий за несколько месяцев показали, что могут с помощью «глубоких фейков» не только экономить при съемках миллионы, но и творить до того невозможное – сплавлять вкусы разных поколений, поднимая популярность дипфейкового стиля клипов на недосягаемую ранее высоту.

Вот ролик ”1999" - идеальный пример использования «глубоких фейков», в котором Charli и Troye Sivan заставляют работать на себя идолов 1990-х: от Стива Джобса, до фильма «Титаник».
А здесь подробности этой темы.

В 1996 году на фестивале «Фантазия-96» (в проведении которого ключевую роль играла моя тогдашняя компания Silicon Graphics), я спросил Аллу Пугачеву, чего она больше всего опасается в компьютеризованном будущем индустрии развлечений.
Примадонна, получившая по итогам фестиваля приз за лучший анимационный клип «Зайка моя» (представлявшийся ею совместно с совсем молодым Киркоровым) уже тогда была в курсе огромных возможностей компьютерной графики, проиллюстрированных ей на демороликах Silicon Graphics.
И она ответила на мой вопрос, что больше всего ей не хотелось бы, чтобы её образ был использован в порно-роликах, библиотеках виртуального секса и поддельных музыкальных клипах с её, якобы, участием.

Права оказалась Алла Борисовна. Прошло 2 десятка лет, и теперь все это не только возможно, но и входит в мейнстрим индустрии развлечений.

Мой майский пост про «глубокие фейки»/

#Deepfakes
Новый кошмар поп звезд – стать поющим призраком
Эх, разворошил я своим сегодняшним постом муравейник индустрии фейковых развлечений! Теперь надо отвечать за базар.

Бдительные читатели тут же мне напомнили об анонсированном сегодня мировом турне умершей 7 лет назад Эми Уайнхаус, благо её отец наконец-то дал разрешение на турне, в котором его покойная дочь примет участие в виде голограммы.

Если кто не в курсе, это будет уже 3й голографический призрак компании BASE Hologram, собирающий деньги концертами по миру, выступая вместе с живыми музыкантами.
Голографические материализации призраков пионера рок-н-ролла Роя Орбисона и одной из величайших оперных певиц XX века Марии Каллас сейчас с успехом концертируют по миру.
Почитать и, главное, посмотреть и послушать, как это все выглядит, можно здесь https://thisis.media/spotlight/gologramma-emi-uaynhaus-otpravitsya-v-mirovoy-tur-v-2019-godu.
А вот здесь мне особенно нравится, как призрак Роя Орбисона растворяется в воздухе, откланявшись после оваций https://culturavrn.ru/world/25474

Осталось добавить 2 вещи.
1) Голограммы поющих призраков все более совершенствуются. Сегодня призраки выглядят куда свежее, чем концертировавшие с 2012 призраки Тупака Шакура, Билли Холидея и Майкла Джексона.
2) Адвокаты уже начали зарабатывать на концертах призраков не меньше коммерсантов из BASE Hologram. Судебные иски растут как грибы. И то ли еще будет https://planetrock.ru/news/vokrug-gologrammy-roya-orbisona-sudebnye-razbiratelstva

Так что к опасениям Аллы Пугачевой при жизни быть скопированной для фейковых целей, добавился еще более страшный кошмар (если не проклятие) – стать поющим призраком, зарабатывающим бабло для наследников бесконечным чёсом с концертами по миру.

С наступающими выходными вас!

#Deepfakes
Каналу 2 года
У канала 17+ тыс. подписчиков (включая зеркала в Medium, Яндекс Дзен и Facebook).
Опубликованы 600 постов, 10% из которых лонгриды.
Пост, в среднем, читают от 3,5 до 5 тыс. человек, рекорд – 300+ тыс.

Самые популярные лонгриды (по числу дочитавших до конца).
На Medium:
Большой войны не миновать 72К
Открыта формула победы на выборах
Бездумные машины 1,4К
На Яндекс Дзен:
Представления о мире скоро кардинально изменятся 23К
Математически доказано — Бог един, а знание не бесконечно 9,6К
Это похоже на новую теорию относительности 6,6К

Пишу, по-прежнему, лишь про то, что мне интересно и при этом не очень-то известно.
Рад, что вы это читаете. Это прибавляет мне оптимизма.
Жить в мире, где подобные темы привлекают внимание, будят интерес и даже, возможно, толкают к действиям, - приятно и стимулирующе.
Надеюсь, что буду и дальше писать, а вы читать.
Счастливо!
✌️
«Эффект обезьяньей лапы» искусственного интеллекта.
Этот эффект отсылает нас к знаменитому рассказу Уильяма Джекобса «Обезьянья лапа».
Некий владелец высушенной обезьяньей лапы получает магическое право на исполнение ею трех его желаний. Его первое желание (для проверки – работает ли) —хочу 200 фунтов стерлингов. Стук в дверь. Там служащий завода, где работает сын. Он сообщает, что сын погиб – его раздавило заводским молотом, и отцу причитается страховка за сына — 200 фунтов стерлингов. Потрясенный отец бросается к обезьяньей лапе и кричит: «Хочу, чтобы мой сын ожил!». Снова стук в дверь. Там стоит призрак расплющенного молотом сына. В ужасе несчастный владелец лапы молит, чтоб призрак исчез… Три желания выполнены точно в соответствии сформулированным требованиям.

Со времен рассказа, подобного рода последствия получили название «эффект обезьяньей лапы». Его суть в следующем.
Наряду с желаемым положительным результатом, желания и действия, направленные на их осуществление, неотвратимо влекут за собой сопутствующие последствия, ущерб от которых:
- может быть непредсказуем;
- может превосходить положительный результат и обесценивать его.


Вот реальный пример «обезьяньей лапы» ИИ.
Всех поражает и все восторгаются, что ИИ не просто обыгрывает чемпионов (шахматы, го, компьютерные игры …), но делает это с применением нечеловеческих стратегий, просто не приходящих людям в голову.
Вот к чему это может вести.
Исследователи натренировали ИИ играть в компьютерную игру CoastRunners – нужно выиграть гонку на катерах, получая очки за сбитые препятствия. Обученный играть ИИ на 20% превзошел лучший из результатов, достигнутых в этой игре людьми. Однако!

ИИ в ходе обучения ухитрился найти лазейку - немыслимую для людей стратегию, основанную на недоработке алгоритма игры (как известно, нетривиальных программ без ошибок не бывает). Найденная ИИ стратегия заставляет катер просто плавать по кругу, сшибая одни и те же 3 препятствия. Результат – сногсшибательно высокое число набираемых очков и выигрыш.
https://www.youtube.com/watch?v=tlOIHko8ySg

Вы спросите, а как же задача опередить всех и добраться до финиша? А никак. Оказалось, из-за недоработки в алгоритме, можно без этого обойтись и выиграть чисто на набранных очках.
Но кто знал то про такой способ выигрыша?
Люди – не знали. А «обезьянья лапа» ИИ прознала про это в момент.

Предоставляю вам самостоятельно перенести этот кейс на любое из возможных промышленных применений ИИ, где ему ставится цель оптимизации чего-либо (потраченных денег или топлива) или достижения конечного результата (например, действия лекарства)…
Наши пожелания ИИ, несомненно, выполнит.
Но кто может предсказать последствия «эффекта обезьяньей лапы» ИИ?
И как вообще учитывать весь спектр последствий при проектировании ИИ систем?

Об этом (для продвинутых в вопросе) новое эссе от DeepMind Safety Research.
https://medium.com/@deepmindsafetyresearch/building-safe-artificial-intelligence-52f5f75058f1
Его суть:
– как просто создаются чрезвычайно опасные ИИ приложения, последствия применения которых не прогнозируемы;
– как трудно и важно этого избежать;
– что конкретно с этим делать.

#AITechnicalSafety
Интернет-тролли – это самореализация бытовых садистов
Это фантастически интересный, предельно простой для понимания и при этом крайне важный для сохранения психического здоровья в наступившей Интернет-эпохе вывод нового сдвоенного исследования 2х университетов.
Авторы представили убедительные доказательства того, что в основе интернет-троллинга рационализация людей с выраженным бытовым садизмом, получивших в руки инструментарий для безнаказанного причинения боли.
N.B. Рационализация – это поиск и подбор человеком рационального объяснения для своего поведения или решений, имеющих иные, неосознаваемые им причины.
Психологические модели увязки рационализации с получаемым актором вознаграждением (удовольствием от причинения боли другим) оказались для бытового садиста и интернет-тролля одинаковыми. И это убедительно подтверждается анализом данных репрезентативной выборки.

Схемы психологических моделей предельно просты.
Получаемое бытовым садистом удовольствие растет с повышением уровня причиняемой боли, но не повышая при этом, а даже понижая уровень ощущения моральной виновности за причиняемую боль.
Абсолютно идентичная схема у интернет-тролля – кайф растет, подпитываемый причиняемой болью троллимого человека, а чувство моральной виновности за причиняемую боль не растет, а наоборот, - растворяется.

Почему это важно.
1) Интернет-троллинг становится самым распространенным способом психологического воздействия в сети.
2) Мы все в сети все больше и больше. Ситуация такая, как если ездить в метро, в котором неуклонно и быстро растет число пассажиров, распространяющих все новые и новые заразные заболевания.
3) В этих условиях сохранение психологического, психического, да и в целом, фактического здоровья зависит от применяемых средств защиты от заражения.

Если вы понимаете:
– что троллинг – это совсем не прикольно, а опасно для вас,
– что троллящий вас – вовсе не заблуждающийся и даже не дурак, а просто садист, питающийся вашей болью, -
вы обязаны заставить себя не испытывать боль:
– либо перестроив свою психологию (что долго и трудно, но возможно),
– либо сделав так, чтобы не видеть и не слышать этого тролля (тут же забаньте его, а если нельзя, - линяйте срочно с этой площадки).

Текст исследования (скайхаб вам в помощь) https://onlinelibrary.wiley.com/doi/abs/10.1111/jopy.12393#.W8Shx31GLFk.twitter

#ИнтернетТроллинг
Внушенные галлюцинации ИИ
Можно без натяжки сказать, что, по сравнению с человеком, ИИ обладает куда более развитыми истерическими свойствами.
Так здоровый, но внушаемый (с истерическими чертами характера) человек может вслед за больным "увидеть" черта, ангелов, летающие тарелки и, вообще, что угодно. Однако, подобные люди – редкость (их порядка процента).
В отличие же от людей, каждый ИИ – законченный истерик. Заставить его видеть вместо стула – черта, вместо шишек – ангелов, а вместо милиционера – летающую тарелку, - совсем не бином Ньютона.
Называется этот трюк - использование «враждебных данных» (adversarial inputs), заставляющих ИИ видеть какие-то обманные образы (а по сути, - вызывать у ИИ внушенные галлюцинации).

Вот перед вами 3 картинки
✔️ Левая –фото ленивца, распознаваемого ИИ с вероятностью > 99%.
✔️ Средняя – фото гоночного авто. Это галлюцинация, которую нужно внушить ИИ, показавая ему слегка модифицированное с помощью «враждебных данных» фото ленивца.
✔️ Правая – это результат: модифицированное с помощью «враждебных данных» фото ленивца, в котором ИИ с вероятностью > 99% распознает гоночное авто.
❗️ Объем «враждебных данных», потребовавшихся для внушения ИИ галлюцинации гоночного автомобиля, видимого им вместо ленивца, пренебрежительно мал – всего 0,0078 отличий в пикселях правого и левого фото (человеческий глаз этого просто не видит – хотя вы можете попробовать).

Представить потенциал ущерба от использования «враждебных данных» злоумышленниками можете сами. Лишь замечу, - теоретически, он сопоставим с ядерным оружием.

И если вы думаете, что внушением галлюцинаций для ИИ никто на практике не занимается, вы жутко ошибаетесь. Всего один, но замечательный пример.

В Китайских соцсетях и мессенджерах фильтруется весь контент, затирая в ноль всё запрещенное партией и правительством (в этот список входит несколько тысяч тем!).
— Сначала фильтровали только текст.
— Но пользователи приспособились и для обмана фильтров стали запрещенные слова прятать в картинки.
— Тогда государство посадило 10 тыс. цензоров для фильтрации картинок. Но они не справились – дюже много работы.
— И вот тогда мобилизовали ИИ на фильтрацию картинок.

Вот как это выглядит. Китайский пользователь WeChat послал картинку – обложку отчета про кампанию репрессий, получившую название "облава 709" (709 Crackdown). ИИ-цензор эту картинку удалил.

И тут внимание.
Ушлые ребята из THECITIZENLAB придумали использовать ИИ для подбора «враждебных данных», способных внушить галлюцинации «ИИ-цензорам», ведущим фильтрацию. В исходных картинках меняется совсем чуть-чуть (как в примере с ленивцем). Поэтому людям эти изменения нипочем – они их просто не замечают. Тогда как «истерический характер ИИ» заставляет его видеть вместо картинок из черного списка что-то совсем иное. И крантец фильтрации – свобода китайским пользователям!
Вот пример. Изображения С и D фильтруются ИИ-цензором, в изображения A и B – нет 😳

Так ИИ-броня ИИ-цензуры оказалась легко пробиваема ИИ-снарядами «враждебных данных».
Но это не конец. ИИ-броня совершенствуется (равно как и ИИ-снаряды).
Детали этой борьбы можете прочесть в отчете
А это подробно про то, как работают «враждебные данные»

#МашинноеОбучение #AdversarialInputs
Все что сегодня известно о креативности ИИ
Рассказывает «Супергерой ИИ», соучредитель DeepMind Демис Хассабис в прекрасно структурированной, визуально привлекательной и содержащий все, что нужно для понимания темы лекции Фонда Ротшильда: 50 мин. + 20 мин интересных Q&A.

Почему это важно. Эта тема определяет будущее десятков профессий. Тот, кто её понимает, получит серьезное преимущество. Но объяснить её просто за 50 мин. могут единицы. И это - тот самый случай.

1. Два подхода в ИИ: экспертная или обучающаяся системы.
2. Почему экспертный подход оказался тупиком (на примере шахмат и го)
3. Как двигаться дальше – к интуиции и креативности ИИ. Чего не хватает для этого у ИИ.
4. Что важнее всего: концепции, абстракции, аналогии, воображения. Похоже, что последнее.
5. Как мы воображаем: от эпизодической памяти – раскладке по полочкам к обратному процессу – воображению.
6. 1я реализация этого подхода - «Генерирующая сеть запросов» (GQN) - машина воображения для порождения 3D сцен (куму нужно, подробней здесь
7. Кейсы простого использования в искусстве, дизайне и науке.
8. А дальше путь к мета-решениям – инструментам превращения ИИ в акселератор прорывных научных открытий и недосягаемых ранее взлетов искусства.

В качестве приложения: Жизнь и карьера супергероя ИИ в фото и картинках

#ИИ #Креативность #Лекция
Мир не иллюзия, а конкуренция иллюзий.
Так работает наиважнейший для эволюции нейро-алгоритм.

Знаменитый Калифорнийский институт технологий (Caltech) предъявил миру новую гениально простую «Иллюзию Кролика», позволяющую каждому удостовериться в справедливости заголовка.
— Нет никакого объективного мира.
— Наш мозг получает информацию от органов чувств и строит по ней модели мира, необходимые для принятия решений (это и есть вершина эволюции для обеспечения выживания и воспроизводства).
— Т.к. чувств несколько, приходится строить много моделей: моно-модели для каждого из чувств и мульти-модели для кросс-сенсорных пересечений.

Все эти модели нужно как-то интегрировать (иначе как принимать решения?)
Алгоритм интеграции – уникальный копирайт эволюции:
• какая из моделей возьмет верх – большой вопрос (хотя, казалось бы, модель на основе зрительной инфы должна доминировать);
• для того нас и так много, чтобы эволюции экспериментировать с этим важнейшим для нее супер-алгоритмом (подбирая параметры и подстраивая алгоритм на каждом из уникальных индивидов).

N.B. Эксперименты с «Иллюзией Кролика» также показывают, что Эйнштейн был прав, говоря «время - это иллюзия». На деле, «Иллюзия Кролика» – это иллюзия путешествия во времени (авторы так и называют её Time-Traveling Illusion)

Предлагаю каждому самому убедиться в вышесказанном:
- пройдите тестирование на «Иллюзию Кролика» (это займет 49 сек) https://www.youtube.com/watch?v=yCpsQ8LZOco&feature=youtu.be
- прочтите описание того, как она работает https://www.sciencedaily.com/releases/2018/10/181009113612.htm
- для углубленного изучения вот доступ к авторским материалам (тексты, видео, таблицы …)
https://authors.library.caltech.edu/90151/
- если кому-то нужно на русском https://thebigtheone.com/?p=2927 (со странным заголовком))
А также:
Про предыдущее не столь научное, но очень красивое подтверждение иллюзорности мира https://t.iss.one/theworldisnoteasy/479

#Мозг #Нейронаука #Сознание
Последнее решение «бить или не бить» навсегда должно остаться за людьми.
Революция в ИИ-революции начинается - «черный ящик» пытаются заменить на «стеклянный».

COO DeepMind Лила Ибрахим в пятничном групповом интервью «пятерки посвященных» о самом важном в современном развитии ИИ сказала: критически важно, чтобы ИИ системы объясняли, как она принимают решения.
За этим признанием стоит позиция Гугла, от которого направление развития ИИ зависит, как от никого другого. И значит теперь есть шанс, что революция в ИИ-революции начинается.
Ведь 1е прорывное ИИ решение DeepMind, способное объяснять принимаемые решения уже создано. Это медицинский ИИ, разработанный DeepMind совместно с лондонской клиникой Moorfields Eye и Университетским колледжем Лондона, для подбора лечения при 50+ заболеваний глаз.

Нужно понимать, что все ИИ разработки, основанные на глубоком обучении (а это практически все прорывные решения в современном ИИ) – это наихудший путь с т.з. объяснений, почему ИИ принимает это решение, а не другое. Вот иллюстрация того, что среди разных методов реализации ИИ, глубокое обучение – лучше всех по точности прогнозов и хуже всех по возможности объяснить свои прогнозы. Эта необъяснимость решения современных ИИ называется проблемой «черного ящика»

Я начал писать на своем канале про этот важнейший для ИИ вызов с момента его создания. Писал уже о многом:
- о «Проекте объяснимого ИИ» - XAI, начатом DARPA в 2016;
- о «черной метке черным ящикам», полученной от госсектора США;
- о нарастающих здесь рисках
- и даже о литературной интерпретации этого вызова Пелевиным.

Но сейчас с приоритезацией этого вызова DeepMind, ситуация в корне меняется.
Неделю назад на '2018 International Explainable AI Symposium' Дэвид Ганнин - руководитель DARPA’вского проекта XAI – рассказал, что в мае исследователи XAI уже продемонстрировали раннюю модель системы объяснительного обучения, а в ноябре будет озвучена оценка результатов 1й фазы проекта.

Решением этого вызова фокусно занимается не только DARPA. Новейшие и уникальные доки по этому вопросу желающие найдут на ресурсах:
- Heatmapping.org (совместный проект Fraunhofer HHI, TU Berlin, SUTD Singapore) – см. подробный туториал по теме в 4х частях;
- корейского Центра объяснимого ИИ XAIC

Однако, самым важным в исследованиях названных выше центров стало открытие новыго колоссального вызова:
Объяснимый ИИ не решает всех проблем – нужен ИИ в формате «прозрачного ящика», т.е. НЕ САМ объясняющий себя людям, а дающий возможность людям видеть его насквозь, самостоятельно постигая смысл и логику его решений и рекомендаций.

Причина этого оказалась в том, что, пользуясь людской ограниченностью и зашоренностью, ИИ в состоянии так «объяснить» свои решения, что люди не смогут увидеть «разводку» со стороны ИИ.
И это значит, что последнее решение «бить или не бить» навсегда должно остаться за людьми.
Подробней об этом здесь

#РискиИИ
Расшифрована «блок-схема» нейроалгоритма стыда.
Он определяет ваши действия и защищает вашу психику от разрушения.

Построена неявная ментальная «карта движения» процесса, определяющего, какие из доступных вам действий вы предпримете, а какие нет. Движением по этой карте управляет система «ментальных стрелок», устанавливающих уровень стыда, который вы готовы перенести (буквально, как боль – физическую или душевную) в результате ваших неправедных действий.

Фраза «позор тебе» оказывает разрушительное воздействие на психику человека.
Но почему? Как создается ощущение стыда и какова его цель?
- Некоторые теоретики утверждают, что чувство стыда - это патология, своего рода болезнь, которую нужно вылечить.
Другие отвергают это как бесполезную, уродливую эмоцию.


Все оказалось совсем не так. Новейшее исследование показывает - позор был встроен в природу человека эволюцией в качестве важнейшей нейро-фичи, необходимой охотнику-собирателю.
Принцип работы алгоритма этой нейро-фичи примерно таков.
• Я живу в составе небольшого племени и подвергаюсь по жизни всяким рискам - то в яму упаду, то на медведя нарвусь, то жрачка закончится … – короче, жизнь тяжелая и опасная.
• Моё выживание напрямую зависит от того, помогут ли мне мои соплеменники (из ямы выбраться, от медведя отбиться, корм найти …)
• Но станут ли мне мои соплеменники помогать – зависит от их отношения ко мне. Назовем это кармой. Если карма высокая – все мне помогают. Если низкая – рассчитывать на помощь вряд ли стоит.
И тут возникает вопрос – что дороже,
✔️ здесь и сейчас спереть или отнять у соплеменника кусок жирного вкусного мяса, но нанести ущерб собственной карме?
✔️ или черт с ним, пусть жрёт, а я потерплю, но зато нет ущерба для кармы?

Вот тут-то эволюция и придумала, как интенсивность ожидаемого чувства стыда соизмерить с внутренне сгенерированным предсказанием того, насколько может обесцениться карма и какие это может иметь для меня последствия.

Эта модель проверена на 15 лингвистически, этнически, экономически и экологически разнообразных обществах, принадлежащих разным культурам. Всюду модель работает как часы. Интенсивность чувства стыда от воображаемых различных действий - типа воровства, проявления скупости, лени и т. д. – растет прям-таки в четкой функциональной зависимости от моделируемого ущерба для кармы (ну а последнее, конечно, зависит от конкретной культуры и условий жизни).

Таким образом, авторы показали следующее.
1) Стыд и позор – не просто чувство или мотиватор. Это важнейшая нейро-фича предсказания и балансировки компромисса между выгодой от действий и снижением кармы.
2) Дабы работа этой фичи ощущалась нами максимально сильно, эволюция реализовала её по лекалам нейро-алгоритмов боли. В результате при сильном стыде и позоре душевная боль сродни физической.
3) И хотя раньше считалось, что 3 разных типа существующих на Земле культур доминантно ориентированы на вину, страх и позор, - чувство стыда (позора) оказалось универсальным для всех культур.

Итого оказалось, что стыд - это биологическая способность, являющаяся частью человеческой природы (как например, способность говорить на человеческом языке), а не культурное изобретение, которое присутствует только в некоторых популяциях (типа способности читать или писать).

Как все это тестили в 15 традиционных малых обществах на четырех континентах, читайте:
- популярно в «Универсальность стыда»
- и по серьезному
«Кросс-культурные инварианты в архитектуре стыда»
«Истинный триггер позора: социальной девальвации достаточно для предотвращения неподобающего поведения»

А здесь предыдущий пост - как была расшифрована «блок-схема» нейроалгоритма гордости

#ЭволюционнаяПсихология
Создана кардинально новая теория информации
Это может быть переломным моментом для десятка наук и технологий: от биологии до ИИ

Революционная работа Артемия Колчинского и Дэвида Вольперта «Семантическая информация, автономное агентство и неравновесная статистическая физика» только что опубликована в трудах Королевского общества.

Мои постоянные читатели знакомы с предысторией этой фантастически интересной и бесконечно важной работы.
А) В январе в посте «70 лет человечество бредет по худшему из лабиринтов» было рассказано, что:
— с 1948 г. доминирующей интерпретацией понятия «информация» стала «бессмысленная информация»;
— эта интерпретация вот уже 70 лет ведет нас по худшему из возможных лабиринтов – вовсе не сложному и запутанному, в состоящему из одного единственного абсолютно прямого пути, ведущего в никуда.
Б) В июле в посте «Создана единая теория смысла информации, универсальная для живого и неживого» сообщалось о разработке проф. Дэвидом Вольпертом математической теории:
— формально описывающей семантическую информацию для широкого спектра наук: от философии и психологии до физики и биологии;
— применимой как для живых существ, так и для любой иной физической системы;
— объясняющей и математически описывающей, почему одна и та же информация для одного человека (и вообще, для любой физической системы) имеет смысл, а для другого – нет.

Новая работа Вольперта и Колчинского дает полное и законченное описание революционной теории информации.
Из этого описания следует:
— Семантическая информация определена, как синтаксическая информация, которую физическая система имеет о своей среде, и которая причинно необходима системе для поддержания своего собственного существования.
— «Причинная необходимость» определяется в терминах гипотетических вмешательств (counter-factual interventions), которые рандомизируют корреляции между системой и ее средой, а «поддержание существования» определяется с точки зрения способности системы держаться в низком энтропийном состоянии.
— Впервые дано математическое определение до сих пор чисто интуитивных понятий: ценность информации», «семантический контент» и «автономный агент». Сущностной связкой этих понятий является базовое положение, что физическая система является автономным агентом в той мере, в какой она располагает бОльшим объемом семантической информации.

Будучи принятой, кардинально новая теория информации:
✔️ изменит вектор развития математико-кибернетических дисциплин и, в первую очередь, ИИ;
✔️ сможет привести к разгадке самого интригующего вопроса биологии - как эволюционировали самые ранние формы жизни и как теперь адаптируются существующие виды, и в частности:
• увеличивается ли объем семантической информации в ходе эволюции?
• является ли обучение совершенствованием навыка сбора осмысленной и важной для существования организма информации?
✔️ поменяет все наши привычные инструменты работы с информацией – и в первую очередь – поисковики (привет поисковым алгоритмам Гугла и Яндекса).

#Семантика #Информация
Новые кейсы для эффективного самообучения.
Среди всех изобретенных способов самообучения, самым эффективным мне видится «Исследуемые объяснения» (Explorable Explanations) великолепного Ники Кейса (Nicky Case).
Об этом чрезвычайно полезном и жутко интересном интерактивном обучающем научно-популярном нон-фикшине я писал в июле https://t.iss.one/theworldisnoteasy/527.
На тот момент коллекция включала 122 «исследуемых объяснения» в 15 областях: искусство, биология, химия, обществоведение, науки о земле, экономика, журналистика, математика, философия, физика, программирование, психология, исследуемые разъяснения и «не классифицируемые улёты».

Сейчас их уже 133 https://explorabl.es/all/
А в результате проходящего «джема исследуемых объяснения», добавилось 23 кандидата https://explorabl.es/jam/ в каталог «исследуемых объяснений».
В их числе (просто для примера):
1) Все о 1D клеточных автоматах!
2) Понимание Фрактала Мандельброта
3) Как делать хорошие головоломки
4) Как своими ушами услышать математику
5) Как работает клеточная мембрана при секреции инсулина
6) Пчелократия – децентрализованная модель выработки консенсуса с помощью танца

Лучшего способа разобраться в сложных вещах – просто, понятно, играючи – мне не известно.
Ну а для самообучения – это вообще клад.
Посему пропагандировал, пропагандирую и буду это продолжать.

Посмотрите на выходных. И детям показать стоит.
Прикольно, интересно, полезно.

#Визуализация #Edutainment #ExplorableExplanations
ИИ губочитка – это конец приватности.
Китай демонстрирует: лидер – это тот, кто владеет данными.

• С перлюстрацией люди научились бороться – просто пишем «об этом писать не буду - обсудим при встрече».
• С прослушкой тоже научились – «это не по телефону», говорим мы.
• И даже с дистанционной подслушкой научились – оставляем мобильники и выходим «покурить» у входа в ресторан или совместно «помыть руки» в туалет или просто фланируем по улице.
Новый подарок человечеству от глубокого обучения – ИИ губочитка – лишает нас этой возможности. Ведь всюду теперь камеры. А если их где-то еще нет, то будут.
Осталось только научить ИИ слету читать по губам в т.н. естественных условиях (с разных ракурсов, в движении, и т.д.)

И вот Китайцы показали, кто в лавке хозяин.
Только-только 1го октября Google DeepMind сообщил, что ИИ снова порвал в тряпки людей, - теперь по части точности чтения по губам. Их ИИ губочитка показала Word Error Rate равный 40.9%. Это в 2+ раза лучше показателей людей - профессионалов губочтения 86,4% - 92,9% (это не процент ошибок, а 4х частная формула, суть которой - чем меньше, тем точнее).
Но спустя всего 2 недели 16 октября китайцы сообщают, что достигли 38,19%. И хотя это очень круто, но сенсация все равно не в этом. А в том, что китайский ИИ губочтец распознает не «студийную начитку», а т.н. «речь в естественных условиях», т.е. практически с любой камеры видеонаблюдения, показывающей говорящего под любым ракурсом.

Секрет прорыва прост – ломовой набор данных для обучения ИИ губочтеца (1К+ классов фонем, 2К+ спикеров, видео натурального разрешения плюс совмещение 2D и 3D методов распознавания).
Понятное дело, пока что распознается мандарин – официальный язык на диалектах северокитайского. Но у Google DeepMind, сами понимаете, английский. А подрядить пару тысяч китайцев наговорить тысяч 5 часов видео в естественных условиях – для Китая дело техники.

Резюме печальное – приватности приходит конец. Осталась только невербальная коммуникация и разговоры самих с собой. Но не обольщайтесь. Китайцы уже начали разработки:
- ИИ чтеца языка тела;
- ИИ чтеца показателей индивидуальных трекеров (пульс, давление …) с геопозиционированием. И попробуй только мысленно в сердцах матюгнуться, проходя мимо портрета нацлидера: твой браслет это отследит, ИИ чтец проинтерпретирует, и получай минус 100 баллов в свою социальную репутацию.

#ГлубокоеОбучение
Festina lente может статься покруче алгоритма Google.
Предложен метод проектного планирования, способный экономить триллионы долларов.

Мир стал кардинально другим после изобретения алгоритмов ссылочного ранжирования типа пэйдж-ранк. И теперь нашим вниманием, осведомленностью и даже знаниями правят поисковики Google и Яндекс.
А казалось бы, всего делов-то - просто изобразили мировую информационную сеть в виде графа и начали тупо рассчитывать для поисковиков числовую меру важности (авторитетности) страницы сайта по количеству и качеству ссылок на неё.
Но экономэффект от внедрения таких алгоритмов исчисляется теперь десятками миллиардов долларов. Возможен ли алгоритм, внедрение которого способно принести нечто подобное?

Есть такой!
Это алгоритм снижения эффекта каскадных сбоев, возникающих вследствие задержек при выполнении отдельных этапов проектов.
Цена вопроса здесь просто колоссальна.
Согласно Мировому банку, 20%+ мирового ВВП (около $80 трилл.) производится на проектной основе. Известно, что сделать проект согласно плану – нетривиальная задача. Из 10+ тыс. проектов в 10+ отраслях и в 30 странах общей стоимостью $6+ млрд., проанализированных PricewaterhouseCoopers, только 254 (около 2%) были выполнены в срок.
Среди 1417 крупных IT проектов, 236 проектов показали перерасход денег более 200% и времени более 70%. Страшно осознавать, но цифры перерасходов на проектах с каждым годом только растут.

И вот замаячил поворотный момент!
Предложен алгоритм (на основе 6и методик), способный помочь в уменьшении перерасходов на проектах.
Внешне это похоже на граф WWW, на котором работают алгоритмы типа пэйдж-ранк. Но в случае проектов, этот граф - ни что иное, как сетевой график проекта (или переведенная в граф диаграмма Ганта).
Цель нового алгоритма – уменьшить распространение каскадов задержек, инициируемых задержкой, случившейся при выполнении конкретной работы. Как только такая задержка случается, запускается схема подавления каскада последующих задержек (их накопления и взакимоусиления).
Основной инструмент алгоритма – оперирование со свободным резервом времени (free float time) - разность между временем окончания работы и началом следующей за ней работы).
Каждая работа (узел сети) ранжируется. И при возникновении задержек идет расчет минимизации последствий распространения каскадов задержек (в обычных условиях они растут, как лавина).
Основной трюк алгоритма в том, что каскад можно минимизировать банальной задержкой времени начала некоторых работ, следующих в сетевом пути графика за работой, на которой уже произошла задержка. В результате таких искусных задержек минимизируется вероятность разрастания каскада задержек.

Короче, опять древние оказались правы. А нам открылся еще один, доселе скрытый смысл латинской мудрости - Festina lente (поспешай медленно).

Ну и самое интересное.
Как думаете – почему пэйдж-ранк покорил мир, и теперь его работой пользуется каждый?
Думаете, потому, что алгоритм такой полезный?
Полагаю, нет.
Секрет успеха в том, что был найден способ его монетизации в поисковиках.

Ау, стартапы! Кто первым выпустит приложение на основе этого алгоритма для экономии времени и денег при выполнении проектов?
Ведь это нужно всем: от строителей до программистов!

Препринт работы Христоса Эллинаса и Наоки Масудо «Modelling project failure and its mitigation in a time-stamped network of interrelated tasks» с примерами, поясняющими работу алгоритма.
https://bit.ly/2yIYNod

#Менеджмент #УправлениеПроектами #ТемпоральныеСети
Не прочесть этот лучший за последний год лонгрид о влиянии связки «ИИ – Геополитика – Экономика» на судьбы мира, - будет большой ошибкой. Уровень проникновения в тему и точность вИдения ближайшего будущего – беспрецедентны для СМИ (эссе выйдет в ноябрьском журнале WIRED).
Ну а пока вы его еще не прочли, желающие могут прочесть мой резюме https://bit.ly/2AACEdW

#ИИ #БольшаяВойна #Геополитика
Новый виток войны е-Добра и е-Зла.
В её основе MIP - методика идентификации пропаганды.

Первым полем битвы е-Добра с е-Злом, как и ожидалось, оказались социальные сети.
Как обычно, первый удар нанесло е-Зло с целью взять под контроль новостную повестку человечества.

Инструментом е-Зла стали соцботы, искажающие повестку в нужную сторону, раздувая одни новости (в том числе фейковые) и тем самым оттирая внимание от других.
Боты е-Зла преуспевают. На прошлой неделе, среди самых обсуждаемых тем в Twitter, до 60% твитов сгенерировали соцботы.
Twitter, потративший последний год на борьбу с ботами, с треском проигрывает этот бой.
Боты е-Зла научились эволюционировать.
Теперь они не просто выдают себя за людей (что худо бедно научились распознавать средства ПБО (противоботовой обороны) Twitter, а вовлекают в свои инфокаскады людей, прячась за их спинами и тем самым скрываясь от ПБО.

Как всегда, силы е-Добра неизмеримо малочисленнее. Но это вовсе не значит, что слабее. Доблести, отваги и креатива им не занимать.
Организованный двумя студентами UC Berkeley стартап Robhat Labs, имеет сегодня в штате всего восьмерых. Но они сумели мобилизовать на бой с ботами наиболее изысканный машинный интеллект – машинное обучение:
- на основе машинного обучения была разработана методология, выявляющая ботов по паттернам их поведения в сети;
- первый продукт команды, расширение Chrome под названием BotCheck.me позволяет пользователям выявлять в своей ленте наиболее вероятных ботов;
- второй инструмент getsurfsafe.com помогает детектировать фейковые новости;
- третий - запущенный вчера Factcheck.me – это Шерлок Холмс в расследовании поведения ботов. Он умеет даже выявлять ботов-провокаторов, подстрекающих людей к распространению нужного е-Злу контента. А еще он ловко определяет картинки-завлекатели (amplified images) и вирусные ссылки.

Если хотите быть на стороне е-Добра, у вас теперь есть неплохой инструментарий.

Подробней:
- о том, как боты разбушевались на прошлой неделе
- методика идентификации пропаганды от Robhat Labs
- о вчерашнем запуске Factcheck.me

О становлении е-Зла также см. посты канала по тегу
#Соцботы
Инновационная «Теория интеллекта тысячи мозгов», бросает вызов привычным взглядам и способна кардинально поменять не только ИИ, но и нейронауку будущего.
Но самое поразительное, что эту революционную теорию начинают признавать, и значит она может прорваться в научный мейнстрим.
Поводом для такого утверждения стала позавчерашняя публикация в Psychology Today статьи Cami Rosso «New Theory of Intelligence May Disrupt AI and Neuroscience», рассказывающей о новейшем исследовании, раздвигающем рамки новой теории “The Thousand Brains Theory of Intelligence”.

Это исследование «A Framework for Intelligence and Cortical Function Based on Grid Cells in the Neocortex» было в октябре опубликовано компанией Numenta и представлено идеологом и основателем Numenta Джеффом Хокинсом на проходившем в Маастрихе Human Brain Project Summit.

Суть «Теории интеллекта тысячи мозгов» проста и элегантна, как Е=mC2.
В мозге создаются сотни, если не тысячи, моделей для каждого из объектов окружающего мира. Их интеграция происходит в каждом кортикальном столбце. И это происходит не только на всех уровнях иерархии, но и параллельно.

Из этого следует очень многое. И в частности, что многое из уже написанного здесь – правда:
«Мир – это не просто галлюцинация», а «Конкуренция множества иллюзий»
«Новая теория того, как мозг строит модель мира, - это прорывной шаг к построению сильного ИИ»
«Куда идет ИИ – уже не столь уж большой секрет»

#ИИ #Нейронаука
Математически доказано — надо идти на выборы.
Демократия заканчивается при низкой явке.
А наблюдаемый в мире раскол — математическое следствие роста “диванной оппозиции”.
Новое исследование Института комплексных систем Новой Англии (NECSI) и MIT дает математически обоснованные ответы на два важнейших вопроса современного устройства общества.
Детали в моем новом посте (4 мин.), завершающем семилетний цикл статей о выборах и расколе https://bit.ly/2P7aCj6

#Выборы #Раскол