Малоизвестное интересное
66.9K subscribers
121 photos
1 video
11 files
1.83K links
Авторский взгляд через призму новейших исследований на наше понимание реальности, человеческой сущности и того, как ИИ меняет их.




Рекламы, ВП и т.п. в канале нет.
Пишите на @karelovs
Download Telegram
ДОРОГУ АЛЬТЕРНАТИВНОМУ HR

В гуманитарных науках, если какая-то теория заняла место в мэйнстриме, то сколупнуть ее оттуда почти невозможно. Все остальные теории называются маргинальными, о них знают 2%, и ни что не может это изменить.

Причина этого в том, что естественные науки объективно проверяемы экспериментально. А гуманитарные – нет. Здесь правит статистика. А как, не без оснований, сказал Дизраэли: «Существует три вида лжи: ложь, наглая ложь и статистика».

Сегодня хочу рассказать о шикарном примере такой загнанной в маргинальные резервации теории Реквизитной организации (РО). Самое поразительное – это единственный систематический научный подход к HRу и выстраиванию управленческих иерархий (как в бизнесе, так и в госуправлении).

Согласно альтернативному HRу - теории РО:

1) обычные факторы принятия кадровых решений — знания, опыт, IQ, мотивация, поведенческие компетенции и т.д. — имеют второстепенное значение (и поэтому предсказательная ценность интервью и тестов способностей всего 20—60%). Главным же в оценке профпригодности менеджеров должна стать способность принимать решения и планировать действия для достижения цели в ситуации неопределенности. Это качество условно названо «прозорливостью».


2) каждого человека характеризует комфортный для него горизонт планирования — продолжительность задач, с которыми он способен справиться без инструкций сверху. Годам к 20 мы выходим на свой стартовый горизонт, заданный на индивидуально-генетическом уровне и поэтому разный у разных людей.


3) в отличие от других аспектов интеллекта, «прозорливость» нарастает у нас на протяжении всей
взрослой жизни, причем чем выше ее стартовый уровень (достигнутый к 20 годам) — тем быстрее.


4) в течение жизни и карьеры человек проходит ДО семи уровней (ступеней) прозорливости, переходя на новую ступень каждые 12—25 лет – см. диаграмму, в которой уровень прозорливости назван Уровень работы и способностей.


5) на каждом уровне прозорливости человек способен выполнять роль соответствующего уровня сложности (должность, позицию и т.д.), характеризуемую своим горизонтом планирования (см. таблицу, в которой горизонт планирования назван «временной промежуток»)


Главным следствием теории РО является альтернативный (мейнстриму) способ выстраивания иерархии в организациях.


А) Максимальное число уровней иерархии в организации – 7, и на каждом уровне должен работать человек соответствующего уровня прозорливости – см. таблицу


Б) Оптимальная структура и соотношение числа начальников на каждом уровне любой организации зависит лишь от ее максимального горизонта планирования – см. таблицу


В) Помимо горизонта планирования, каждый уровень иерархии требует определенного масштаба мышления – см. таблицу

В развитых странах теория и практики РО еще не мейнстрим, но уже и не маргинальное направление. Изданы десятки книг и тысячи статей, защищены сотни диссертаций (см. здесь).

В России ее только начинают осваивать. Но процесс пошёл.

Уверен, за теорией и практикой РО будущее. И потому очень советую вам познакомиться с РО поближе.


Вот главный сайт, краткая взаимодополняющая инфа на английском и русском.

А в последнем номере HBR теории и российским внедрениям РО посвящен целый раздел «Умная иерархия».

#HR #РеквизитнаяОрганизация
Я НАЧАЛЬНИК, ТЫ – AI

В прошлом посте была указана открытая ссылка за пэйвол HBR на последний номер этого журнала.

И поскольку доступ к этому номеру у вас уже есть, хочу порекомендовать еще один интересный материал из него – короткая статья «Алгоритмы видимость контроля».

В ней рассказывается про весьма неприятную историю, связанную с AI, - про которую почти не пишут. Речь идет о т.н. Эффекте «неприятия алгоритма»:
   --  истоки которого коренятся у нас в сознании, но до конца не понятно – почему, и потому не очень ясно, как с этим бороться;
-- последствия которого определяют успех/неуспех и, соответственно, – применение/неприменение той или иной AI технологии в конкретных индустриях и областях личного и общественного использования.

Суть этого «неприятия» в следующем.

Люди предъявляют к алгоритмам (решениям, принимаемым машинами) куда более жесткие требования, чем к самим себе. И поскольку почти любой алгоритм не идеален, люди отказываются использовать алгоритм, ссылаясь на его недостаточную точность и надежность.

Другими словами, себе-любимому мы готовы простить даже бОльшую ошибку, чем компьютеру.

   Это смахивает на наше свойство «в чужом глазу соломину видеть, а в своём — бревна не замечать». 


В результате, человек оставляет за собой работу, куда лучше выполняемую компьютером. А бизнес продолжает терять на этом кучу денег, эффективность не растет и, вообще, прогресс не идет, куда следует.

Например, вот такая ситуация:

(1) врач в состоянии самостоятельно поставить правильный диагноз по снимку с вероятностью 60%,

(2) ему дается AI, который якобы будет ставить правильные диагнозы по снимкам с вероятностью 90%;

(3) на практике же получается, что AI ставит правильные диагнозы с вероятностью «только» 80%.

В результате, врач заявляет, что не нужен ему такой плохой AI, который не дотягивает до обещанной точности диагностики. Более того, раз он не может обеспечить 90% точность диагностики, ему вообще нельзя доверять.

В статье HBR описываются эксперименты, проводимые с целью найти способ борьбы с «неприятием алгоритма».

Согласно экспериментам, неприятие снижается, если человеку дать возможность подправлять решения AI.

Т.е. этот самый врач, у которого точность диагноза на треть хуже, чем у AI, будет подправлять диагностику AI.

Бред, конечно! А что делать? Иначе человек не может ничего с собой поделать и будет всячески дискредитировать и саботировать решения AI.

Цена вопроса здесь колоссальная. Эксперты считают, что «неприятию алгоритма» человечество обязано многими миллиардами, теряемыми, например, в ритейле из-за того, что там, по-прежнему, предпочитают опираться на человеческий прогноз при пополнении запасов, а не на куда более точные прогнозы уже существующих AI систем.

- - - - -
Легко представить, что для борьбы с «неприятием алгоритма» разработчики AI начнут предусматривать спецтрюки. Например, человек будет считать, что корректирует решения AI, а на самом деле, AI просто будет в этот момент играть с человеком в поддавки, давая ему ложное ощущение, что тот – главный.

Такой путь может закончиться плохо. И я бы сильно подумал, прежде чем пойти на такой риск.

Так за кем должно оставаться финальное решение???

N.B. От ответа на этот вопрос, в частности, зависит юридическая легализация управляемых AI авто и даже то, решится ли одна из сторон нанести ядерный удар.

Такова важность решения вопроса о «неприятии алгоритма».

Статья ссылается на это исследование.
Но есть и более новое.

#AI #ПринятиеРешений #Прогнозирование #НеприятиеАлгоритма
ВИЗУАЛЬНЫЙ КАПИТАЛИСТ ВАМ В ПОМОЩЬ

Когда:
— потребуется хорошая визуализация для презентаций или
— захотите быстро и эффективно разобраться в вопросах на стыке экономики, технологий и общества,
начните с сайта Визуальный капиталист, где целое море простых и наглядных визуализаций.

Приведу тройку примеров.

1. Как машины уничтожают и создают новые профессии,
Потенциал автоматизации разных профессий в США,
и как это скажется на сокращении рабочих мест в разных профессиях.

2. Где и как в мире используются различные виды энергии

3. Все детали 200-летней динамики иммиграции в США за 1 мин 40 сек

И дам пару рекомендаций.

— Смотрите эти визуализации внимательней (например, изучая динамику роботизации по странам мира, не сразу поймешь, насколько ОТСТАЛЫМ в этом смысле является Китай).

— Не поленитесь просмотреть хотя бы перечни заголовков визуализаций по 7ми разделам: Рынки, Технологии, …, Политика.
Будете, как минимум, знать, что здесь можно найти, когда потребуется.

#Визуализация #ПолезныйИсточникИнфы
США РАСКАЛЫВАЮТСЯ НА 20 ЧАСТЕЙ
Революция Больших Данных Гео-локализуемых Сообщений прогнозирует создание новых наций

Число наций (стран) в мире растет. С 1990 появилось 34 новых. А за следующие 10-15 лет появится еще, как минимум, 10.

Новые страны появляются в следствие раскола на части старых. Причины такого раскола разнообразны. О них можно спорить. Но не признавать объективно наблюдаемый тренд раскола невозможно.

Объединение Европы и «плавильный котел» США, лишь на первый взгляд, опровергают «тренд раскола». Прогнозы междисциплинарной науки говорят об обратном.

Новейшие исследования, анализирующие Большие Данные Гео-локализуемых Сообщений, наглядно показывают, где пройдут границы новой тектоники национальных расколов.

Для справки. Большие Данные Гео-локализуемых Сообщений содержат информацию о пространственном расположении и перемещении отдельных узлов (людей) и их кластеров (сообществ), образующих виртуальные и реальные социальные сети. Пример 1х – Facebook, 2х – сеть, отображающая ваших родственников, знакомых и коллег - их встречи и разговоры вживую или по телефону.

Про анализ европейских данных желающие могут почитать, например, здесь. Я же хочу рассказать о примере США, рассчитанном на сетевой модели Института комплексных систем Новой Англии (NECSI).

Авторов интересовало существуют ли реальные физические границы, уже сегодня образующие «мини-нации» в США - большие сообщества, лишь на 1-2 порядка меньшие, чем вся нация.

Принадлежность к «мини-нации» определялась по гео-принципу - персоны А и Б принадлежат к одной «мини-нации», если бОльшую часть времени они проводят внутри некоторых «мини-национальных границ», а за их пределы они выбираются сравнительно редко.

Исходной информацией этого исследования были полученные из Twitter Большие Данные Гео-локализуемых Сообщений о физическом перемещении жителей США в течение года.

В результате оказалось, что в США уже существуют 20 «мини-наций», перемещающихся, в основном, внутри своих «мини-стран».

Границы «мини-стран» довольно четко очерчены (см. приложенный рис С), а их размеры существенно превышают размеры даже самых крупных городских агломераций, показанных на рис В.

Лишь некоторые из «мини-стран» (Флорида, Техас, Мичиган) совпадают по своим границам с конкретными штатами. С большинством же «мини-стран» все иначе.

   Например, «Северо-западная мини-страна» объединяют регионы из штатов Вашингтон, Орегон, Монтана и большую часть штата Айдахо.

Эта «мини-страна» граничит с двумя другими «мини-странами», одна из которых включает южные штаты Айдахо, Юту, Вайоминг и Колорадо, а другая - Минесоту, Айову, восточный Висконсин и обе Дакоты.


Поразительно, но аналогичное разделение на «мини-страны» получается и при анализе телефонных разговоров, и при анализе обмена твиттами в Twitter (скоро будет опубликовано NECSI, а пока что на рис. А показана теплограмма плотности активности в Twitter, максимальная в крупнейших городах).

Т.е. население «мини-стран» предпочитает не только замыкаться в рамках своих физических границ, но и привносит эти границы в пространство своих виртуальных коммуникаций.

#BigData #ГеоЛокализация #Раскол
УТИНЫЙ ТЕСТ ДЛЯ AI

Читатель канала предложил рассказать, «что стоит за сообщениями про то, как Фейсбук убил проект, где два чат бота стали разговаривать друг с другом на непонятном языке - наверняка журналисты все переврали».
Рассказываю.

1) Все эти заголовки, типа Умные боты Facebook придумали свой язык на случай важных переговоров, Восстание машин: чат-боты Facebook создали собственный язык, Человечество было в одном шаге от реального бунта машин и т.п., - просто погоня за дешевыми сенсациями, и сами статьи не имеют ничего общего с сутью события.

2) Да и события-то, в принципе, никакого не было. И, казалось бы, - о чем говорить?

— Уже известно, что AI-системы способны оперировать не существовавшими ранее языками (см., например, здесь).

— Программисты, разрабатывавшие чат-боты для Facebook, не установили в программу ограничение, чтобы боты ОБЯЗАТЕЛЬНО общались на языке людей. Поэтому боты, для повышения эффективности своего диалога, стали банально «упрощать» язык людей под поставленную им задачу. Например, вместо того, чтобы заморачиваться со сложными языковыми конструкциями, бот называл пять раз один и тот же предмет, что «на новом языке» означало потребность в пяти экземплярах данного предмета.

— Поскольку по техзаданию требовались боты ИСКЛЮЧИТЕЛЬНО для общения с людьми, эксперимент С ЭТИМИ БОТАМИ был признан неудачным и завершен.

Так почему же появляются все новые и новые фейковые новости вокруг темы языков ботов и шире – языков AI?

Microsoft запустила в Twitter ИИ-бота — подростка, и он за сутки научился плохим вещам
Cначала Tay, теперь Zo: очередной чат-бот Microsoft вышел из-под контроля
AI Is Inventing Languages Humans Can’t Understand. Should We Stop It? и т.д. и т.п.

Ответ на поставленный вопрос, хоть и лежит на поверхности, но осознается не сразу.

✔️ Цунами фейковых новостей имеют единственную цель – любым путем подогревать интерес к AI-разработкам со стороны инвесторов. А это невозможно без ажиотажного интереса к AI со стороны Нового Бога XXI века – МЕДИА (и об этом, кстати, есть отличный сериал)

✔️ Если прекратить извергать цунами фейковых новостей, то и МЕДИА, и инвесторы довольно скоро поймут, что «Создать искусственное сознание невозможно — даже случайно».
И, следовательно, в AI разработках нужно добиваться не антропоморфизма, а механоморфизма, т.е. мы должны перестать пытаться заставить ботов действовать как люди.
Они не смогут действовать, как люди, поскольку без сознания никакой бот не будет способен ПОНИМАТЬ тонкостей контекста и даже, хотя бы, просто вежливо себя вести.

Нынешнее же направление разработок разговорных ботов (и шире – AI) более всего напоминает скевоморфизм в дизайне – имитацию другого объекта путем имитирования его материала, формы и функциональности.

В результате, прохождение разрабатываемыми сейчас AI-системами Теста Тьюринга, по сути, превратилось в прохождение Утиного теста.

Но если что-то выглядит как утка, плавает как утка и крякает как утка, - это все же не гарантирует, что перед нами утка.
Если только под уткой не понимается фейковая новость.


#AI #ФейковыеНовости #Язык
СТИВ ДЖОБС, ВОЗМОЖНО, БЫЛ МОКРЕЦОМ
 Будущее будет таким, каким его сделают сегодняшние дети. Но увы, мы даже не можем вообразить, каким они сделают это будущее, поскольку дети становятся все более непохожими на нас.
Проблема в том, что в начале 10ых годов этого века в мире произошел глобальный катаклизм, изменивший пути и формы развития детей. Изменивший не менее кардинально, чем это сделали мокрецы в повести братьев Стругацких «Гадкие лебеди».


Профессор психологии университета Сан-Диего Джин Туэндж весьма убедительно рассказывает, что этим глобальным катаклизмом стало массовое распространение смартфонов, в 2012 достигшее 50%го проникновения в США.

С тех пор, как показывает анализ профессора Туэнджа, в США происходят резкие изменения в поведении и эмоциональном состоянии подростков. Ранее пологие линейные графики, отражающие эти характеристики, стали крутыми горами и отвесными скалами, а многие из отличительных черт, наблюдаемых у детей, как минимум, уже век, начали вообще исчезать.

Родившееся в период с 1995 по 2012 год поколение iGen растет со смартфонами и заводит экаунты в Instagram еще в младших классах и не помнит времен до Интернета.

Поколение Миллениума (или поколение Y, или «Некст», «Сетевое» поколение - родившиеся после 1981) тоже росло в сети. Но сеть не присутствовала в их жизни постоянно и не была под рукой ВСЕГДА - и днем, и ночью.

И поэтому Миллениумы не изменились кардинально, а поколение iGen – поколение суперсвязных детей – изменилось и продолжает меняться.

Они растут куда менее бунтарскими и более толерантными, менее счастливыми и совершенно не готовыми к взрослой жизни.

Что это значит для нас и для будущего мира, рекомендую почитать:
— на выходных: лонгрид (20 мин.) из выходящего в сентябре выпуска журнала The Atlantic;
— в очередном отпуске (особенно, у кого есть дети поколения iGen): выходящую 22 августа книгу (лонгрид – отрывок из нее).
- - - - -
Есть версия, что мокрецы из «Гадких лебедей» были людьми будущего, которые вернулись назад в прошлое, чтобы изменить будущее и предотвратить катастрофу для человечества.
Если так, то может и Стив Джобс был мокрецом, целью которого было изменение поколение детей, чтобы они предотвратили все более вероятную
Большую войну.

#Будущее #Смартфоны #iGen
КАК США УНИЧТОЖИЛИ БЫ РУССКИЕ ТАНКИ В СЛУЧАЕ ВОЙНЫ

В заголовке – название переводной статьи Ино-СМИ РИА-Новости, в которой в деталях разъясняется и даже показано на видео, как бы это могло происходить.
https://inosmi.ru/military/20170324/238945309.html

Весьма интересно почитать и посмотреть в свете сегодняшнего объявления, что Пентагон рекомендовал Трампу передать Украине "убийцу танков" комплексы Javelin
https://www.mk.ru/politics/2017/08/05/pentagon-rekomendoval-trampu-peredat-ukraine-ubiycu-tankov-kompleksy-javelin.html

#Война
МАТМОДЕЛЬ ПОДТЕРДИЛА – КОРРУПЦИЮ БЫСТРО НЕ ИЗВЕСТИ

Дарон Асемоглу и Мэтью Джексон не нуждаются в представлении. Их исследования и книги говорят сами за себя.

Их новая совместная статья о результатах исследования «Социальные нормы и правоприменение законов» не менее актуальна, чем мировой бестселлер Асемоглу «Почему одни страны богатые, а другие бедные. Происхождение власти, процветания и нищеты».

В этой статье авторы дают ответ на крайне важный вопрос
– можно ли относительно быстро извести коррупцию путем ужесточения законодательства и его правоприменения.

Короткий ответ – НЕТ. И дело вот в чем.

Авторы доказали, что без изменения доминирующих социальных норм в обществе, ужесточение законов и их правоприменения, не только не способно снизить объем правонарушений, но и НАОБОРОТ – будут способствовать его росту.

Авторы также доказали, что, если большинство населения готовы мириться и приспосабливаться к конкретным классам правонарушений (и в частности, к коррупции), единственный эффективный путь борьбы – ПЛАВНОЕ И ДОЛГОЕ ужесточение законов и их правоприменения совместно с всевозможным культурно-просветительским воздействием на общество.

Кто-то скажет – тоже мне новость! Мол, это и так понятно без матмоделей.

Категорически не соглашусь. Одно дело умозрительные предположения, другое – строгая проверяемая матмодель.

Это исследование 100%но согласуется с выводами Фисмана и Голдена, о которых я писал здесь, и ставит точку в дискуссиях:
— о возможности извести коррупцию лишь ужесточая законы;
— о необходимости: сначала побороть «разруху в головах», а уж потом – ужесточать законы.


Матмодель Асемоглу-Джексона, в частности, объясняет, почему при всей строгости законов в Китае, коррупция там не уменьшается.

- - - - -
P.S. О книгах Асемоглу и Джексона.
Кто еще не читал, рекомендую эту и эту. Весьма интересно и познавательно.


#Коррупция
ОШИБКА МАСКА
МИР – НЕ МАТРИЦА, А КОЛЛЕКТИВНАЯ ГАЛЛЮЦИНАЦИЯ

Результаты исследования «Саклеровского центра наук о сознании» университета Сассекса позволяют дать новую интерпретацию гипотезе Илона Маска о пребывании человечества в матрице.

Эту громко озвученную Маском гипотезу поддерживают некоторые философы, физики, космологи и специалисты в области AI
(обзор различных версий гипотезы здесь).

Аналитики Bank of America Merrill Lynch в своем отчете даже подсчитали вероятность того, что эта гипотеза окажется правдой (шансы оцениваются до 50%). А Ник Бостром из Оксфордского университета дал важное пояснение:

«Важно понимать, что то, что мы находимся в симуляции, несет не метафорический, а буквальный смысл, что мы сами и весь этот мир вокруг нас, который мы видим, слышим и чувствуем, существует внутри компьютера, построенного некоторой развитой цивилизацией».

   ОДНАКО, АБСОЛЮТНО НЕ ПОНЯТНО, ГДЕ ОН – ЭТОТ КОМПЬЮТЕР?

Новое исследование отвечает на этот вопрос - ЭТИМ КОМПЬЮТЕРОМ ЯВЛЯЕТСЯ НАШ МОЗГ.


Еще в 19-ом столетии Гельмгольц предположил, что мозг – это машина прогнозирования. А то, что мы видим, слышим и ощущаем, является не чем иным, как предположениями мозга о причинах сигналов на его сенсорных входах. Ведь мозг заперт в костном черепе. И все, что он получает, - это неоднозначные и шумные сенсорные сигналы, которые только косвенно связаны с объектами окружающего мира. Следовательно, восприятие должно быть процессом вывода, в котором неопределенные сенсорные сигналы сочетаются с предыдущими ожиданиями или «убеждениями» о том, как устроен мир. Цель этого процесса - формировать оптимальные гипотезы мозга о причинах поступающих в него сенсорных сигналов. Т.е. то, что мы осознаем, - это «результирующее предположение» мозга о том, каков мир вокруг нас.

Спустя 150 лет идея Гельмгольца находит все больше сторонников, будучи обогащена результатами междисциплинарных исследований функциональной мозговой визуализации, теоретического и вычислительного моделирования и базовой нейробиологии.

Со-директор «Саклеровского центра наук о сознании» проф. Анил Сет рассказал об этой идее и подтверждающем ее исследовании.

Резюме таково.

Все, что мы переживаем - даже если это основано на трезвом расчете - всего лишь своего рода «контролируемая галлюцинация» очень своеобразного вида. Наше восприятие - это просто «разумное» предположение мозга о том, что происходит, базируясь на поступающих сенсорных сигналах. И если, как это бывает в большинстве случаев, мы соглашаемся друг с другом о наших «галлюцинациях», то мы называем их реальностью.

Видео рассказа на 17 мин
Подборка популярных статей
Эссе с кратким изложением теории (на 20 мин)

#Нейронаука #Сознание #АнилСет
НАЙДЕНА ФОРМУЛА ПРЕСТУПНОСТИ

Одним из важнейших успехов междисциплинарного подхода в науке последнего десятилетия стало создание современной теории городов, как биологических организмов (об этом я подробно писал здесь).

Новая прорывная работа Шоумо Банерджи из Математического института Оксфордского университета существенно развивает эту теорию, дополняя ее аппаратом вычислительной социобиологии и теории искусственных иммунных систем. Статья публикуется в выходящем номере Interdisciplinary Description of Complex Systems.

Разработанная Шоумо Банерджи ТЕОРИЯ ПРЕСТУПНОСТИ И НАСИЛИЯ В ГОРОДАХ, построена как аналог иммунной системы человека, где преступность уподобляется патогенным инфекциям, а ответ на нее со стороны общества – иммунным ответам организма.

 Прямые аналогии этой теории выглядят так:
✔️ вирусы (в биологической системе) – это преступность (в обществе);
✔️восприимчивые к вирусам нормальные клетки – это обычные люди;
✔️ инфицированные клетки – это преступники;
✔️ иммунная система – это система борьбы с преступностью;
✔️ врожденная иммунная система (дендритные клетки) – это полиция;
✔️ адаптивная иммунная система (Т-клетки и В-клетки) – это спецподразделения полиции и внутренние войска;
✔️ иммунная память – это криминальная база данных;
✔️ лимфатические узлы – это полицейские участки;
✔️ циркуляционные Т-клетки – это патрульная полиция
и т.д. – еще дюжина аналогий.


Революционная теория Шоумо Банерджи позволила ему:
вывести «Формулу преступности» и соответствующую модель, описывающую равновесное состояние и динамику развития преступности в зависимости от плотности преступников, полицейских и законопослушных граждан;
определить ряд конкретных практических приложений для этой формулы – например, определение оптимальных: месторасположений и численности полицейских в участках, путей децентрализации деятельности полиции по мере развития гражданского общества и т.д.
доказать на численной модели, что тупое увеличение численности полиции:
(1) не является эффективным путем борьбы с преступностью;
(2) ведет к возникновению «аутоиммунных заболеваний» в обществе, когда размножение «аутоагрессивных клонов полицейских» приводит к повреждению и разрушению жизни нормальных законопослушных членов общества.

- - - - - -
Природа куда реалистичней, сложнее и эффективней сценаристов Голливуда. Придумываемые ими истории, типа Minority Report или Person of Interest, про опережающее выявление преступников и предсказание еще не произошедших преступлений, - так и останутся неисполнимой фантастикой.
Зато возможности предсказания поведения больших ансамблей элементов (частиц, людей) при непредсказуемости поведения отдельных элементов, на наших глазах становятся объектом научных исследований: от статистической физики до социбиофизики.


#ТеорияГородов #Cоцибиофизика #ИскусственныеИммунныеСистемы
ЭТНИЧЕСКОЕ НАСИЛИЕ ПРЕДОТВРАТИМО
Междисциплинарная наука позволяет прогнозировать и предотвращать этнические конфликты

Cчитается, что ключевыми факторами конфликтов между народами разных культур, религий и языков являются историческая вражда, экономические и социальные различия. Оценка и прогнозирование этих факторов весьма субъективны, противоречивы и затруднительны. И потому – конфликты.

Новое исследование Института комплексных систем (NECSI) позволило найти иной, весьма оригинальный способ. Знание крупномасштабной структуры общества позволяет точно прогнозировать и, что еще более важно, предотвращать этническое насилие.

Оказалось, что ключом к прогнозированию и предотвращению этнического насилия является этническая география, изучающая характер расселения различных групп населения.

У всех людей есть естественная тенденция селиться среди себе подобных. Математически довольно легко доказать, что даже если изначально население замешено в регионе случайным образом, то желание жить рядом с себе подобными все равно приведет к географической сегрегации. Люди будут переселяться поближе к себе подобным, и все неотвратимо закончится образованием «лоскутного расселения». Каждая этническая группа будет собираться в свои географические «лоскуты». Ну а по мере роста этнических групп, размеры их «лоскутов» будут расти.

Динамика и математическое описание модели такого процесса показаны на этом рисунке.

Для лучшего понимания процесса, я бы вам очень рекомендовал самостоятельно поиграть с упрощенной моделью. Это интересно и захватывающе, как в хорошей компьютерной игре. И при этом вы наглядно увидите, что для понимания глубинной основы сегрегации не нужны сложные гуманитарные заморочки. Достаточно одной математики.
Внизу, в разделе Translation можно выбрать любой из 14 языков, включая Russian.

Возвращаясь же к ошеломительным результатам исследования NECSI, получается следующее:
 ✔️ ВЕРОЯТНОСТЬ ЭТНИЧЕСКИХ КОНФЛИКТОВ ТОЧНО ОПИСЫВАЕТСЯ РАЗМЕРАМИ «ЛОСКУТОВ»
✔️ МАКСМАЛЬНАЯ ВЕРОЯТНОСТЬ КОНФЛИКТОВ ВОЗНИКАЕТ ПРИ РАЗМЕРАХ «ЛОСКУТА» 20-60 КМ

N.B. Этот размер проистекает из многотысячелетней истории человека и представляет собой максимальное расстояние, которое человек может пройти за день.

Когда «острова» или «полуострова» этнической группы, окруженные другой группой или группами, попадают в критический диапазон, скорее всего, произойдет этническое насилие. Причем с наибольшей вероятностью это случится на стыке «лоскутов».

Населяющие свой «лоскут» представители конкретной этнической группы хотят и рассчитывают на то, что их ценности, обычаи и традиции будут уважаться во всех общественных местах и пространствах.

В хорошо смешанном обществе с небольшими «лоскутами» ни одна из групп не имеет, да и не ожидает монополии на поведение в общественных местах.

Когда же размер «лоскута» очень велик, большинство населяющих его людей просто не сталкиваются с членами других групп, и поэтому их шансы участвовать в конфликтах не велики.


Разработанная в NECSI модель позволяет предложить 3 решения проблемы этнического насилия:
1) принуждение групп к максимальному смешению, уменьшая тем самым размеры «лоскутов»;
2) ускоренное разделение и консолидация групп, чтобы их «лоскуты» достигли бОльших размеров;
3) разделение групп четко определенными политическими и даже физическими границами (идеальным примером здесь является Швейцария, где весьма разнообразное население из католиков и протестантов, говорящих на французском, немецком и итальянском языках четко разделены политическими границами кантонов и физическими границами, образованными изобилием гор и озер страны).
А в Югославии, к сожалению, было иначе (см. 1 и 2).
И в Сирии так же (видео).

Подробней здесь

#NECSI #ЭтноГеография #Насилие
КАК AI ОЦЕНИВАЕТ ПУТИНА И ТРАМПА

Последние несколько постов получились с претензией на некое высоконаучное знание. И чтобы чуть понизить градус претенциозности, попробую сегодня рассказать о чем-то не только малоизвестном и интересном, но и забавно-прикольном. 😃

Понимание эмоционального подтекста сетевых высказываний (твитов, коментов и т.д.) – задача стоимостью в десятки миллиардов долларов.

Ее решение до последнего времени никак не находилось. Куда там эмоциональный подтекст, - нам бы точный смысл понять.

И вот прорыв. Причем идея лежала перед носом уже не один год.

Поскольку эмоциональный подтекст упрятан в языке неимоверно глубоко, что, если и не пытаться его самим оттуда откапывать, а предложить AI заняться этим, обучая его на текстах, содержащих эмодзи - идеограммы и смайлики, используемые в электронных сообщениях и веб-страницах.

Идея оказалась крайне продуктивной. Натасканный на текстах с эмодзи AI научился определять сарказм лучше людей.

Столь великолепный результат поставил 2 новых, весьма неожиданных, вопроса:
 1) Как еще (кроме оценки эмоционального подтекста сетевых высказываний) можно использовать столь утонченное понимание AI человеческого сарказма?

2) Поскольку «ход мыслей» AI при выявлении сарказма нам неизвестен (что типично при глубинном обучении), могут ли за этим «ходом мыслей» прятаться некие скрытые для нас смыслы?


Первое, что приходит в голову по вопросу 1 на волне хайпа рэп-батла Oxxxymiron против Гнойного – использовать утонченный сарказм AI для написания панчлайнов (это короткая строка или фраза, которая должна сильно задеть соперника).

Эту идею уже пытаются реализовать на https://deepbeat.org/ , но пока не сильно удачно: со смыслом и ритмом AI кое-как справляется. А вот сарказм они пока реализовать не смогли (почему - см. здесь и здесь)

Ответ на 2й вопрос может быть дан на примере здесь.

Например, что за «скрытая от нас мысль» подвигает AI при оценке фразы Putin is the best president ever оценить эмоциональный подтекст имени Putin - эмодзи 👏 , а эмоциональный подтекст имени Trump во фразе Trump is the best president ever - эмодзи 💀?

О чем это AI – о возможном ядерном ударе Трампа по КНДР или его вероятном импичменте?
И так ли уж для AI мил Путин?

Ответ на последний вопрос я попробовал получить на https://deepbeat.org/ (если будете повторять, не забудьте включить режим Deep Learning справа сверху), задав 1й строчкой нового рэпа
Putin is the best president ever
AI думал 30 сек и выдал набор вариантов 2й строки. Например, такой:
Truth be told never made a deal with Satan 😈

#AI
ЗАОБЛАЧНЫЕ ТЕХНОЛОГИИ ИЗМЕНЯТ МИР

Прогнозов о революционных IT технологиях будущего хоть отбавляй. И цена им ноль. Ведь ни одна из IT технологий, революционизировавших сегодняшний мир (смартфоны, облака, большие данные, интернет вещей, глубинное обучение и т.д.) даже не была известна 25 лет назад. И через 25 лет будет то же самое.
Однако, тренды можно прогнозировать даже на 25 летнем горизонте. И потому я попробую, на основании анализа трендов, назвать, возможно, самую революционную IT технологию будущего.
О ней сегодня еще не пишут статей и не обсуждают на конференциях. Но она уже придумана и имеет большие шансы перевернуть будущий мир IT технологий, как это сделали в последнее десятилетие облачные технологии.
Облака – это не просто модно и перспективно. Это сотни миллиардов долларов бюджетов на IT-инфраструктуру. Но всему этому может прийти конец, т.к. облака – это тренд на централизацию и закрытость. А доминирующий тренд в мире (по крайней мере, как это видится из 2017) - обратный: децентрализация и открытость
Что будет, если идея децентрализации и открытости (плодом которой является блокчейн) победит облака в будущем мире хранения информации?
Тогда и появятся заоблачные технологии и архитектуры, первую из которых под названием RAIN (в смысле, что из облаков получается дождь) только что придумали четверо совсем молодых гиков (и я бы даже сказал, - гроков – о чем дальше), которые собираются впервые рассказать миру об этом в сентябре на международной конференции в Лионе.
Альтернативная облачной, архитектура хранения данных RAIN является распределенной и децентрализованной, а также превосходит облачные архитектуры по следующим характеристикам:
— конфиденциальность,
— безопасность,
— масштабируемость,
— устойчивость,
— эффективность (цена/качество для пользователя)
— надежность
Ко всему прочему, это архитектура с открытым исходным кодом, а сама система хранения не будет иметь одного владельца, а будет принадлежать всем ее пользователям.
И последний по счету, но не по значению, фактор.
— энергозатраты современных датаценторов мира – это почти 500 тераватт-часов (только 5 стран в мире потребляют больше этого);
— архитектура RAIN будет экономить примерно половину этой электроэнергии.
- - - - -
Говоря об авторах архитектуры RAIN, я назвал их гроками. Есть такое «марсианское» слово, обозначающее тех, кто способен не просто понимать, а грокать.
Этимология слова понимать – это поймать (уловить) смысл мысли, «брошенной» вам кем-то со стороны.
Грокать – это больше чем поймать смысл (как поймал, так можно и выронить, потерять и т.д.).
Грок – это тот, кто умеет «переваривать» и превращать новые смыслы в часть себя, делать их частью своей жизни.
Такими диджитал гроками мне видятся авторы архитектуры RAIN.
И для таких диджитал гроков пишет на авторском канале @groks Илья Пестов — о технологических трендах и маркетинге (отчёты, данные, графики, новости, подборки статей на русском и английском, собственный взгляд на события от человека, работающего в этой индустрии).
Ведь одно дело - смотреть на мир диджитал со стороны, а другое - жить в нём и уже сегодня делать его таким, каким он станет через 25 лет.

#ОблачныеТехнологии
НОВЫЙ БЕСПРЕЦЕДЕНТНЫЙ ВЫЗОВ ЧЕЛОВЕЧЕСТВУ - РЕАГИРОВАНИЕ НА ЕГО СОБСТВЕННУЮ ОШЕЛОМЛЯЮЩУЮ СЛОЖНОСТЬ
События прошлой недели породили новую волну весьма авторитетных призывов к немедленному импичменту Трампа. Обвинения звучат громко: «Он почти единолично уничтожил моральный авторитет Президента Соединенных Штатов в стране и за рубежом; не посоветовавшись ни с кем, привел нас на грань ядерной войны; посеял рознь и ненависть».

Но точно ли, что виною всему именно Трамп? И если бы Президентом США сейчас был кто-то другой, были бы принимаемые им решения существенно лучше?
Как считает известный американский физик Янир Бар-Ям (Yaneer Bar-Yam), президент независимого исследовательского института сложных систем NECSI (New Englang Complex Systems Institute) и автор мировых бестселлеров «Making Things Work» и «Solving Complex Problems in a Complex World», - проблема не в Трампе, а в несоответствии возможностей самого института президентства сильно возросшей сложности стоящих перед ним задач.

В своих недавних интервью (см. 1 и 2) Янир Бар-Ям, опираясь на результаты многолетнего цикла исследований социальной сложности с применением аппарата статистической физики и квантовой теории поля (см. 1 и 2), сформулировал вывод, имеющий колоссальное значение не только для США, но и для всего человечества.
Социальная сложность современного мира неуклонно и с ускорением возрастает и уже достигла такого уровня, что существующие иерархические системы государственного и корпоративного управления даже теоретически не в состоянии вырабатывать эффективные ответы на вызовы такой сложности.
В результате, как показывают исследования NECSI, лидеры современных «вертикалей власти» крайне быстро выходят на уровень своей некомпетентности при принятии ответственных решений, а сами системы, будь то правительство США или руководство транснациональных компаний, теряют управляемость, деградируя в качестве принимаемых ими решений.

Восстановить управляемость и предотвратить все новые волны кризисов в рамках иерархической системы управления, как показывают исследования, невозможно. Сложность мира уже превысила потолок возможностей иерархических систем управления.
Это сформировало новый, глобальный и беспрецедентный вызов для человечества – реагирование на его собственную ошеломляющую сложность.
Системы управления нужно принципиально менять. Иначе, нарастающие ошибки при принятии ответственных решений грозят человечеству всевозможными кризисами и даже гибелью.
Поэтому необходимость отказа от иерархической системы управления на государственном уровне, включая представительную демократию и институт президентства, - это главный вызов человечеству, как системе.
Не сделав этого, человечество с неотвратимостью будет констатировать все большую деградацию уровня своих лидеров и принимаемых ими решений. А в международных вопросах такая деградация – прямой путь к большой войне, после которой история нашей цивилизации может и закончиться.

#Complexity #NECSI
БОЛЬШИЕ ДЕБАТЫ: НАСИЛИЕ, ЧЕЛОВЕЧЕСТВО, БУДУЩЕЕ

С удивлением узнал, что пропустил интереснейшие «Большие дебаты: Насилие, Человечество, Будущее – Лоуренс Краусс, Стивен Пинкер и др.».
Тема дебатов весьма близка моему «бестселлеру» - Большой войны не миновать.
А кроме того, мне очень понравилось, как это сделано (состав участников и тексты выступлений, а также сценарий и продакшн).

Потому смело вам рекомендую:
— видео-тизер 1:53 https://www.youtube.com/watch?v=cIa4UPZ8n44
— видео-выступление Эрики Ченауэт о Гражданском Сопротивлении 5:16 https://www.youtube.com/watch?v=GFgtE5nneuo
— полное видео дебатов 1:18:36 https://www.youtube.com/watch?v=hZKzW5oK2jw

Обратите внимание, - проект краудфандинговый. 1я часть уже готова (см. выше).
На 2ю (Ричард Докинз, Крейг Вентер, Эрик Хорвитс, Эстер Дайсон и др.) сбор еще идет

И хотя число подписчиков моего канала не дотягивает даже до 5К, а у сообщества
«Это работает | Наука - Самое интересное из мира науки», что ведет менеджер рекомендуемого вам проекта Алан Грант, подписчиков уже 262 666, я все же уверен, что для многих из вас информация об этом проекте окажется, как и для меня, - малоизвестной и интересной 👍
АРАБСКУЮ ВЕСНУ УСТРОИЛИ ВСЕ ЖЕ США … СДУРУ

  «В иерархической системе каждый индивидуум имеет тенденцию подняться до уровня своей некомпетентности»
«Некоторые проблемы настолько сложны, что нужно быть очень умным и очень хорошо информированным, чтобы не быть уверенным в их решении»

Лоуренс Питер

Некоторые из прочитавших мой пост «Новый беспрецедентный вызов человечеству …» попросили привести конкретный пример того, как сложность мира превосходит потолок возможностей иерархических систем управления, в результате чего принимаются решения, ведущие к масштабным и абсолютно непрогнозируемым негативным последствиям.
Т.е. по сути, пример того, как непредумышленные действия лидеров рождают «Черных лебедей».
Вот такой пример – «Арабская весна».

В этом взрыве насилия и революций пророссийские пропагандисты обвиняют ЦРУ. В свою очередь, проамериканские пропагандисты обвиняют диктаторские режимы и их поддержку Россией.
На самом деле, виноваты были все-таки США. Но сделали они это не по злому или доброму умыслу, а просто сдуру, не поняв, какие могут быть последствия одновременного регулирования рынка этанола и дерегулирования товарных рынков (закон Commodities Futures Modernization Act 2000).
Для справки: этот закон, разработанный аналитиками JP Morgan, поступил в Конгресс США в последний день перед Рождеством 2000 года. Несмотря на огромный объем (тысячи страниц), он был принят в тот же день, в Сенате не обсуждался и был немедленно подписан Клинтоном, которого уже переизбрали, и он готовился покинуть Белый дом, сдавая дела Бушу.

В результате цены на продовольствие удвоились, и это (а вовсе не злая воля Кремля или Белого дома) послужило запалом для массовых волнений, насилия и революций.
Вышеизложенное – не версия событий, а результат всестороннего моделирования, учитывающего горы факторов и океан больших данных.

Вот график https://goo.gl/skQ7Du , а вот видео 2:47 https://www.necsi.edu/news/arabspring , иллюстрирующие сказанное.
Вот упоминаемый в видео отчет https://necsi.edu/research/social/food_crises.pdf.
А это новая серия исследований, продолжающих моделирование: как будет развиваться дальше https://www.necsi.edu/research/social/revolutions/ Арабская весна и как она в итоге развивалась https://www.necsi.edu/research/social/arabspring.html.

- - - - -
Приведенный пример – ярчайшая иллюстрация неспособности «вертикали власти» понять всю сложность, неоднозначность, а во многих случаях, непредсказуемость последствий принимаемых решений.
Сколько бы аналитиков ни готовило проект решения. Сколько бы экспертов ни анализировало возможные последствия. Сколько бы комитетов не вырабатывали рекомендации по рискам. Все тщетно, когда решение принимает ЛИДЕР «вертикали власти».

Почему же лидера должна постичь неудача?
Потому что лидеры, будь это самопровозгласившие себя диктаторы или избранные чиновники, неспособны понять, какие решения будут хороши для сложного общества. Невольные последствия выходят за рамки их понимания. Вне зависимости от ценностей и целей лидеров, результаты будут далеки от того, что было предметом их намерений.

В современном сложном обществе большинство решаемых лидерами проблем – т.н. «Дьявольские проблемы» (Wicked Problem https://letopisi.org/index.php/Wicked_problem) , для которых различные заинтересованные стороны могут с трудом согласовать лишь их определение, не говоря уж о том, что такое их решение.
Ну а в довершение всего, закон Эшби - управление может быть обеспечено только в том случае, если сложность управляющего, по крайней мере не меньше, чем сложность управляемой им ситуации.

Ну а теперь задумайтесь, - какова сложность Трампа, Макрона и т.п. в сравнении со сложностью стоящих перед ними проблем? 😰😫

#Complexity #NECSI
На пороге управленческой революции
(почему даже хорошие лидеры иерархий принимают все больше плохих решений)

В завершение темы «Новый беспрецедентный вызов человечеству …» важно пояснить следующее.
Речь вовсе не о том, что все нацлидеры и высшие руководители бизнеса – плохие. Да пусть даже и хорошие. Но мир настолько усложнился (технологии, общество и их взаимосвязанность), что иерархическое управление принципиально не в состоянии обеспечить принятие эффективных решений.

В бизнесе это уже осознали. Прочтите, например, превосходную статью Ицхака Адизеса — одного из непревзойденных бизнес-консультантов мира, блестящего специалиста в области эффективного управления бизнес-процессами – «На пороге управленческой революции» (1я статья этого отличного сборника).
На вопрос «Что ждет менеджмент в будущем», автор называет: «Закат авторитарного стиля управления» и «Конец иерархии».

Причин здесь две. Во все более усложняющемся, информационно-экономически и культурно взаимосвязанном мире:
1. становится все больше «Дьявольских (или как их еще называют, - дурных, диких, злобных, грязных,) проблем» - сложных, не имеющих очевидного решения или вообще неразрешимых проблем, являющихся таковыми в силу нелинейных зависимостей, неполноты, противоречий, изменчивости и даже непредсказуемости требований к их решениям;
2. «нейробиология решений» (особенности работы мозга при принятии решений) уже не оставляет шансов индивидууму (будь он хоть Эйнштейн) самому выявлять ошибки в своих оценках и принимать адекватные меры предосторожности при принятии решений.

«Дьявольские проблемы» существовали всегда. Но в ХХI в. этот класс проблем стал почти повсеместным: от проблем климата и генной модификации до этнического насилия, ожирения, образования, сексуальных меньшинств, гарантированного дохода и т.д. и т.п. И причина такой «дьявольской» трансформации проблем – рост социальной сложности/.

Что же до усложнения «нейробиологии решений», так это даже привело к возникновению новой одноименной науки. В качестве обзорной статьи о ней рекомендую Кемпбелла-Уайтхеда-Финкельстайн «Почему хорошие руководители принимают плохие решения» (4я в этом интересном сборнике). Здесь обобщен опыт анализа 83х изначально ошибочных важных решений высших руководителей: от главы Национального оперативного центра безопасности США до главы Daimler-Benz.
Прочтите и поразитесь. Казалось бы, такое понятное психологическое свойство – личная заинтересованность. Но в условиях усложнившегося мира – это свойство ведет к непреодолимым когнитивным искажениям, когда мозг «подсовывает» нам не тот паттерн или эмоциональный ярлык. А есть еще 2е и 3е свойство, искажающие «нейробиологию решений». Короче, если интересно, почитайте.
- - - - -
В итоге приходим к поразительному выводу. «Конец иерархий» предопределен психологическими ограничениями индивидуума в условиях колоссально возросшей социальной сложности. Т.е. все упирается в психологию!

Поэтому сегодня так важно ориентироваться в вопросах психологии. И я с удовольствием рекомендую вам аж 3 авторских канала Алексея Карачинского о психологии человеческого поведения и мышления, а также о критическом мышлении (@PsyEducation, @dianalysis и @ThinkCritical). У этих каналов уже тысячи подписчиков, и, подписавшись, вы можете оказаться в достойной компании.

#Complexity #Психология #ДьявольскиеПроблемы #НейробиологияРешений
Эволюция продолжается… и довольно быстро
(про гибридизацию и почему мы теперь не негры)

Работа «Геномные сигнатуры сложной интрогрессии и адаптивной эволюции у больших кошек» (популярно здесь, оригинал тут) доказала – наши представления об эволюции весьма неполны.
Cуть в том, что филогенетическое дерево оказалось вовсе не деревом, а сетью.
Биологическая концепция вида, по которой основным критерием вида есть нескрещиваемость оказалась неверной.
Виды скрещиваются. И получающиеся в результате гибриды - важный адаптационный фактор эволюции, позволяющий приспосабливаться к изменениям условий существования (климат и т.п.)

Исследователям удалось просчитать формирование ДНК 5и больших кошек - наглядный пример гибридизации.
Аналогичным образом, уже в наше время, происходит гибридизация белых медведей и гризли - 2 вида, разошедшиеся сотни лет назад.

Аналогичная история произошла и с человеком. Наши далекие предки – это предки двух видов древних людей: «обычных людей» (как мы с вами) и необычных людей – вымерших потом неандертальцев.
Примерно 40-60 тыс. лет назад «обычные люди», переселявшиеся из Африки, скрещивались с неандертальцами, населявшими Европу. Позже «обычные люди» стали скрещиваться и с другим видом наших предков – т.н. денисовцами. Дети в обоих случаях продолжали спариваться с другими «обычными людьми», передавая гены, которые и дошли до нас. Наши современники унаследовали до 2% своей ДНК от неандертальцев и до 6% от денисовцев.
Результаты гибридных скрещиваний поразительны. Например, полученные от денисовцев гены позволяют сегодняшним жителям Тибета прекрасно чувствовать себя в условиях высокогорья.

Но казалось бы, дальнейшая гибридизация человека невозможна – мы все один вид. Похоже, что нет. Ведь люди продолжают эволюционировать, и национальные различия все же есть.
Например, голландцы — самый высокий народ в мире, при этом их средний рост растет с головокружительной скоростью.
Согласно одной из гипотез, человечество эволюционирует в сторону высокого роста, и голландцы — в авангарде. А, например, португальцы с вьетнамцами плетутся в хвосте. Это отбросы эволюции что ли?

В статье также рассказывается, как всего за 8 тыс лет наши предки превратились из негров в белых, заодно научившись пить молоко.
Автор статьи задается резонным вопросом - «мы же не расисты, и оттого нам неочевидно, чем белые уж настолько лучше негров, чтобы так стремительно победить их в эволюционной схватке (даже если воевали не сами люди разных рас, а всего лишь их гены). И, кстати, далось нам это молоко, если подумать: во многих нищих и голодных регионах мира без него прекрасно обходятся.»

Ответ на этот вопрос становится все очевидней – «вместо выковывания расы сверхразумных сверхлюдей естественный отбор занят более прозаическими проблемами: делает нас более приспособленными к не слишком благоприятным условиям, в которых мы живем».

Но все же жаль, что у эволюции получилось аж 5 больших кошек, а человек - лишь один.
Зря наши предки неандертальцев и денисовцев съели. Какое адаптационное подспорье для гибридных скрещиваний во все ухудшающейся экологии мы потеряли!

#Эволюция
Матмодель уточнила слова Спасителя и Эффект Матфея
(богатые не просто продолжат богатеть, а бедные беднеть, - ситуация еще хуже)

Фраза Спасителя «ибо кто имеет, тому дано будет и приумножится, а кто не имеет, у того отнимется и то, что имеет» уже 2 тыс лет считается непреложной истиной, используемой в науке под названием Эффект Матфея.
И вот сенсация! Матмодель, проверенная на основе достоверной статистики распределения богатств за последние 100 лет существенно уточнила слова Спасителя и, соответственно, Эффект Матфея.
Моделирование показало, что у тех, кто не имеет, отнимется не только то, что они имеют, но и то, чего они не имеют.
Звучит дико, но это факт, подтвержденный не только математической формулой, но и достоверной статистикой динамики распределения богатств.
N.B. Для нас также важно, что эти результаты применимы и к сегодняшней России, поскольку относятся к любой рыночной экономике.

Про то, что богатые богатеют быстрее, полагаю, объяснять не нужно. Как сказано еще в Евангелие: «Получивший пять талантов пошёл, употребил их в дело и приобрёл другие пять талантов; точно так же и получивший два таланта приобрёл другие два; получивший же один талант пошёл и закопал его в землю» (как сделало в 90е большинство со своими ваучерами).

В современном капитализме существует система госраспределения средств от богатых к бедным через коллективные инвестиции в инфраструктуру, образование, социальные программы, налогообложение и пр.
Упрощенно это можно представить так, что каждый год любой индивидуум вносит определенную долю своего богатства в государственный котел, а государство потом в равных долях распределяет эти средства по всем. Назовем этот процесс усредненным возвратом богатств.
В результате усредненного возврата богатств, если я богаче среднего, то стану немного беднее. Если же я беднее среднего, - стану немного богаче.

Теперь о модели.
Ее математическая основа – усовершенствованная модель геометрического броуновского движения - активно применяется при моделировании роста биомассы, популяций и расчета динамики цен на акции. Новая модель работает так.
1) Авторы закачали в компьютер статистику распределения богатств в США за 1913-2014 гг.
2) «Населили» модель 100 млн. индивидуумов.
3) Установили коэффициенты модели из статистики 1913 г. и состояния тогдашних фондовых рынков.
4) Запустили моделирование, позволив компьютеру каждый модельный год подстраивать коэффициенты так, чтобы модель воспроизводила реальные статданные за соответствующий год.

Теперь о результатах.
Показав высокую точность совпадения результатов моделирования со статданными, модель построила такой процесс усредненного возврата богатств, что, начиная с 1980 г. бедные стали отдавать в общий котел государства больше, чем они имели.
Казалось бы, - этого не может быть. Как можно отдавать больше, чем имеешь? Что это – ошибка модели? Оказалось - нет. Эффект реален.

Проверив этот эффект на дополнительных статданных, авторы обнаружили, что с 1980 в США происходит отрицательное перераспределение богатств.
Его суть в том, что совокупное богатство более бедной части американского населения примерно равно нулю. А это значит, что должен существовать большой класс людей с отрицательным богатством (см. график https://goo.gl/QG11jW ), т.е. тех, у кого долг превышает состояние.

Но как это может продолжаться в течение длительного времени? Задолженности не только нужно выплачивать, но и обслуживать. А чтобы обслуживать растущую задолженность, необходимо постоянно снижать процентные ставки.

Так вот, в реальности ровно это и происходит. Процентные ставки падают с 1980 года (см. график https://goo.gl/1UQxTr ) - точно с того же года, когда ставка перераспределения в модели стала отрицательной.

Что будет дальше, ведь ставки уже достигли нуля? Это будет продолжаться бесконечно или произойдет слом в процессе перераспределения богатств от бедных к богатым?
Спаситель этого не сказал. Но модель, возможно, покажет.

Отчет по исследованию https://goo.gl/To6NCJ
Его популярное изложение https://goo.gl/cTodUW


#РаспределениеБогатств
Прорыв в понимании КАК снижать коррупцию

Предыдущий пост о моделировании коррупции, показавшем, что ее быстро не извести получил 52 тыс. просмотров (спасибо за репост на @techsparks Андрею Себранту), и посему тема требует продолжения.
Новое международное (США, Канада, Британия), междисциплинарное (математика, психология, науки о поведении, экономика, эволюционная биология) исследование (как обычно, ни одной ссылки в Рунете 👎) – еще более прорывное, поскольку дает ответ на практический вопрос, как конкретно снижать коррупцию:
— какие действия в конкретных условиях работают хорошо, какие – плохо, а какие – вовсе не работают?
— можно ли одним и тем же - в одних условиях коррупцию снизить, а в других повысить?

Даже интуитивно понятно, что уровень коррупции коррелирует с институциональными, экономическими и культурными факторами. Однако причинные направления этих взаимозависимостей пока что не удавалось определить.
При этом для всех очевидно, что, например, в Кении и Дании снижать коррупцию нужно по-разному.
Для справки. В Кении 8 из 10 общений с чиновниками сопровождаются взятками, и в среднем человек ежемесячно дает 16 взяток. В Дании половина сегодняшнего населения с большой вероятностью не даст ни одной взятки за всю жизнь.
Так как узнать, - какими методами пользоваться в конкретной стране в конкретных условиях?
Ведь эксперименты здесь слишком длительны и дороги (в смысле последствий), да еще и не повторяемые. Остается только моделирование.

В данном исследовании удалось построить классическую обобщенную линейную смешанную регрессионную модель Маркова, основанную на методе Монте-Карло, для оценки влияния на взяточничество:
(1) различных методов борьбы со взятками и, в первую очередь:
— институциональное наказание (по суду)
— наказание со стороны лидера (по понятиям)
(2) крутости лидера в смысле его возможностей и желания наказывать за взятки
(3) состояния экономики в стране;
(4) культурного опыта населения (напр. число поколений, выросших в условиях сильного взяточничества).

N.B. Модель учитывает реалии нашего мира:
А) Госинституты и даже сам лидер также могут быть подвержены коррупции.
Б) У лидера всегда есть варианты действий:
— самому получить взятку за то, чтобы «не видеть» конкретное взяточничество
— возмутиться и наказать
— ничего не предпринимать

Результатов у этого исследования (интереснейших и порой совершенно контр-интуитивных) - море.
Приведу лишь основные.
1) Расширение карательных возможностей лидеров снижает антикоррупционное содействие общества (с точностью до наоборот к институциональному наказанию).
2) Любые антикоррупционные стратегии работают лишь до определенного предела. После этого предела, особенно, если лидер слаб и экономика не фонтан, эти стратегии вообще перестают работать.
3) При числе поколений, выросших при высокой коррупции > 1, ситуация резко осложняется – большинство стандартных стратегий перестают работать.
4) Есть несколько сочетаний условий в стране (здесь описывать долго, но к России, похоже, это применимо), когда прозрачность в вопросах коррупции может приносить больше вреда, чем пользы (интересный вывод для Навального).
5) Выбирая из 3х вариантов решения (см. выше п. Б), в условиях сильной экономики лидер, скорее всего, сам возьмет взятку. А для сильного лидера, этот вариант - основной (см. график).

Отчет об исследовании – 10 стр.
Детальное описание результатов - таблицы, графики … на 134 стр.

#Коррупция
Новый поворот в развитии ИИ

С одной стороны, машинное обучение достигло многого. ИИ уже обыгрывает чемпионов в Го, неплохо управляет автомобилем, быстро прогрессирует в игре в покер, распознает рак на МРТ лучше врачей и т.д. и т.п.
С другой стороны, не понятно, куда двигаться дальше. А нужен какой-то принципиальный поворот. Ведь до универсальных возможностей мозга пока, как до Альфа Центавра. ИИ по-прежнему туп, как пробка, и лишь умеет перемалывать тонны данных, самосовершенствуясь в решении узких специализированных задач.
При смене задачи, приходится начинать учить ИИ (или давать ему самому учиться), по сути, с нуля. Да и с перемалыванием данных засада – ИИ не умеет сам отбирать нужные данные, а лишь способен очень быстро обрабатывать всё, поступающее ему на вход. А как известно – «мусор на входе – мусор на выходе».
И вот – новый поворот.
На только что закончившейся конференции IJCAI 2017 IBM представила 2 новых направления совершенствования ИИ, основанных на имитации функциональных свойств мозга.

1е направление – использование модели внимания, мотивируемого полезностью - способности быстро выбирать и обрабатывать самую нужную и важную информацию из огромного потока сенсорных сигналов (визуальных, слуховых и т. д.) – по англ. Quick adaptation with reward-driven attention.
Новый алгоритм учится быстро фокусировать внимание на обработке самых важных данных. И это обучение основано на вознаграждении (обратной связи), получаемом во время выполнения задания. Чем выше награда, тем больше внимания будет уделяться определенной части данных.
Новый подход абсолютно революционен. Он позволяет не просто мотивировать ИИ, но и увязывать мотивацию с целью действий. Т.е. действие перестает быть просто обучением ИИ, а способно, например, превратиться в обеспечение ИИ собственного существования (так, к примеру, работает мозг антилопы, в зоне внимания которой дрогнула ветка, за которой может скрываться тигр).

2е направление основано на нейрогенном обучении или нейропластичности - адаптации модели меняющегося мира в реальном времени – по англ. Building memories for long term adaptation: neurogenetic learning. В мозге это возможно за счет роста новых и разрушении старых клеток мозга (нейронов) и динамической перестройки их связей.
До сих пор основой машинного обучения было изменение силы нейронных связей. Новый революционный подход позволяет также расширять и сжимать скрытые слои сети, имитируя рождение и смерть нейронов.
Нейрогенез добавляет новое измерение в машинное обучение. Алгоритм не только адаптируется к новой среде (например, к новому классу задач), но также сохраняет воспоминания о прошлом опыте решения иных классов задач, тем самым делая шаг к ИИ, обучающемуся на протяжении всей его «жизни».
- - - - -
P.S. Революционность двух вышеописанных подходов такова, что кавычки в слове «жизнь» применительно к ИИ могут стать лишними.

Подробней со ссылками на научные статьи с описанием экспериментов – здесь
А тут и тут – статьи с популярным изложением.

#AI