STOLBOV STUDY | ФИЗИКА для взрослых и детей
750 subscribers
102 photos
11 videos
2 files
65 links
Сергей Столбов

🔬🎓Учёный, кандидат наук.
📚Преподаватель с 2013 года.

Помогаю познавать мир с помощью науки.

ЕГЭ/ОГЭ по физике и математике на 90+.

Связь: @stolbser
Download Telegram
Можно ли точно измерить положение и скорость частицы?

Сегодня завершаем знакомство с квантовой механикой в трех частях, первые две из которых были о корпускулярно-волновом дуализме Луи де Бройля и лучшей из первых моделей атома Нильса Бора. Это три главных принципа, которые отличают квантовую механику от классической и приводят к особенностям изучения микромира.

Речь пойдет о принципе неопределенности Гейзенберга.

Слова, скорее всего, знакомы многим, но понять сам принцип довольно трудно. Поэтому попробуем упростить и разобраться.

В классической механике, если мы движемся куда-то, скажем, на автомобиле, мы точно знаем в каком месте мы находимся в каждый момент времени и с какой скоростью движемся в этот момент. Теоретически, если представить, что у нас неимоверно точный метод измерения или прибор с нулевой погрешностью, мы можем абсолютно точно измерить свою координату и скорость (или импульс).

В квантовой механике мы уже выяснили с помощью де Бройля, что все вокруг как частицы, так и волны, и в микромире это особенно заметно. Принцип неопределенности – это, по сути, следствие корпускулярно-волнового дуализма.

Чтобы точно измерить положение частицы мы должны зафиксировать конкретный момент времени, т.е. как будто сфотографировать частицу моментальным кадром. Но если частица – это еще и волна, то, чтобы измерить длину волны, которая связана с ее скоростью, мы должны выждать какой-то промежуток времени, чтобы конкретная ее точка (например, гребень) прошла определенное расстояние. Таким образом, возникает противоречие: для более точного определения положения частицы нам нужно как можно быстрее фиксировать конкретный момент времени, а для более точного измерения длины волны частицы (или ее скорости и импульса) нужно как можно дольше подождать, дав ей пройти какое-то расстояние. Как мы видим, эти две величины одновременно с одинаковой точностью измерить невозможно.

Картинка ниже – это лучшая иллюстрация, которую мне удалось найти, дающая хоть какое-то представление об этом непонятном принципе неопределенности. Конкретный кадр частицы определяет ее точное положение, но не дает никакого представления о ее длине волны, а измеренное за какое-то время значение длины волны размывает положение частицы. Поэтому, чаще всего не говорят о конкретном положении квантовых частиц, а только лишь о вероятности их нахождения в той или иной области пространства.

Ну а Гейзенберг вывел конкретные критерии точности определения одновременно этих двух величин: произведение погрешности измерения импульса и координаты частицы не менее половины приведенного значения постоянной Планка.

Δx Δp ≥ ħ/2


Учитывая, что постоянная Планка – это очень маленькая величина (10 в минус 34 степени), критерий не очень, то и строгий. Для нас, также, согласно де Бройлю, представителей волн, вообще незначительный. У нас длина волны имеет примерно такую же величину, так что по факту погрешностей измерений этих величин нет, в теории мы их измеряем абсолютно точно и подчиняемся классической механике. А вот для частиц, у которых длины волн гораздо больше этой величины, разница уже видна.

Конечно же, в вышеизложенном много упрощений, т.к. квантовую
механику объяснять на пальцах очень трудозатратно. У нас не было задачи ее изучить, мы лишь с ней познакомились и поняли основные ее отличия от классической теории. Пишите, если есть вопросы.

STOLBOV STUDY
13🔥9🆒2🤯1
Мало кто знает, но уран, про опасность которого я рассказывал здесь, является последним стабильным элементом, встречающимся в природе. Все что дальше в периодической таблице - это искусственно полученные при различных ядерных реакциях. Многие из них распадаются очень быстро и получаются достаточно трудно и в очень малых количествах, но учёные умудрились их поймать. Одним из таких является последний из открытых 118 элемент Оганесон, о котором можно почитать статью в научно-популярном журнале. Российские учёные в Дубне приложили к этому руку, как и к некоторым другим открытым актиноидам. У журнала есть также и телеграм канал
👍87🆒3🔥1
Самое распространенное агрегатное состояние вещества во вселенной.

Нет, это, как ни странно, не газ, не жидкость и, уж тем более, не твердое тело. Это четвертое состояние под названием плазма.

Плазма
– такое особенное газообразное состояние, при котором атомы «разобраны» на части – свободные электроны и положительные ионы или голые атомные ядра. По этой причине, в отличие от газа, плазма хорошо проводит электрический ток и подвергается влиянию магнитных полей. Этот «суп» из разноименных заряженных частиц, из которого состоят звезды и большая часть межзвездного пространства, является в масштабах вселенной самым распространенным веществом.

Так как количество положительных и отрицательных зарядов в плазме уравновешено, то, можно сказать, что она электрически нейтральна, как единое целое. Однако, если мы это равновесие чем-то локально нарушим, например, запустив извне электромагнитную волну (фонариком посветить на плазму захотим😁) то это внешнее электромагнитное поле будет смещать заряды, и запустятся плазменные колебания частиц вокруг их привычного места нахождения.

Как получить такой интересный ионизированный газ?
Атомам нужен сильный энергетический пинок, чтобы электроны из них вылетели.

1️⃣ Самое банальное – нагреть до экстремально высоких температур – миллионы кельвинов. При таких температурах атомы имеют настолько большую энергию и настолько сильно сталкиваются друг с другом, что уже не могут удерживать электроны, и их электронные оболочки разрушаются, высвобождая свободные электроны наружу.

2️⃣ Пропустить через газ электрический ток. Простые газоразрядные устройства (трубки, лампы и т. д.), в которых тоже находится плазма. Подробнее про ионизацию газа я рассказывал, когда писал про сварку.

3️⃣ Бомбардировать газ, электромагнитными волнами (например, лазер), в результате чего электроны выбиваются из атома, и дальше по цепочке ионизируют другие атомы.

4️⃣ Создать ударную волну или взрыв, при которой воздух сильно сжимается и нагревается до очень высоких температур, при которых см. п.1.

Многие, наверняка, при слове «плазма» представляют себе тот самый стеклянный шар, прикасаясь к которому можно наблюдать разряды, идущие к пальцам. Да, там действительно находится холодная плазма, образованная по п. 2. В центре стоит электрод, на который подается переменное напряжение высокой частоты, а вокруг него газ, который при возбуждении и ионизации может светиться красивыми цветами. Второй электрод – это Земля, но не напрямую, а через воздух и предметы, на которых стоит установка. Поэтому в спокойном состоянии разряд очень слабый и мы видим тонкие, хаотично расположенные нити. Но стоит нам прикоснуться – возникает молния от центрального электрода к нашим пальцам, т.к. мы служим отличным проводником к тому самому второму электроду – Земле. От удара током нас, кстати, спасает та самая стеклянная оболочка шара. Вот такая нехитрая игрушка.

В описанных ранее здесь природных явлениях тоже образуется плазма:

🔵При полярном сиянии частицы, прилетевшие из космоса, не только возбуждают, но и частично ионизируют разреженные слои атмосферы, и там образуется разреженная плазма.

🔵При грозе молния разогревает окружающий воздух до высоких температур, да еще и ионизирует – благоприятные условия для образования такого вещества.

Зачем вообще нужна плазма, и зачем ее изучать?

Конечно, если бы она была нужна только лишь для создания игрушек для детей и газоразрядных ламп, сварки и других повседневных и промышленных применений, никто бы не стал создавать целый раздел физики, изучающей это состояние. Главная цель – обуздать горячую плазму, чтобы освоить и научиться управлять новым, гораздо более мощным, по сравнению с другими, источником энергии, о котором мы еще поговорим подробнее.
Please open Telegram to view this post
VIEW IN TELEGRAM
12🔥5👍4🆒1
Вот уже и первая неделя учебного года прошла, а я, выйдя 1 сентября из длинного отпуска, пока разгребал рабочие дела, вспомнил, что я же ещё и преподаватель. Поэтому, внимание! Сейчас буду преподавать продавать!

Если у вас есть дети, учащиеся 8-11 класса или вы ими являетесь, и вам (или им) нужны занятия по физике или математике, то эта информация для вас.

Если вы здесь, чтобы приятно провести время за моим повествованием о разных физических явлениях, то просто пролистайте этот пост в ожидании нового. На днях будет очередная интересная тема.

По обоим предметам работаю в двух форматах:

1. Индивидуально для любых целей (ОГЭ, ЕГЭ, Олимпиады или просто глубже изучить предмет)

2. Мини-группы до 5 человек по подготовке к ОГЭ и ЕГЭ.

Свободных мест, конечно, мало, но немного еще есть. Стоимость адекватная.

Все подробности можно узнать, написав мне в личку @stolbser. Подберём подходящий формат.

А ниже немного отзывов о моей работе.
🔥94👍3🆒2