Data Science. SQL hub
35.7K subscribers
966 photos
56 videos
37 files
1.01K links
По всем вопросам- @workakkk

@itchannels_telegram - 🔥лучшие ит-каналы

@ai_machinelearning_big_data - Machine learning

@pythonl - Python

@pythonlbooks- python книги📚

@datascienceiot - ml книги📚

РКН: https://vk.cc/cIi9vo
Download Telegram
🌊📊 pg_lake: Postgres для Iceberg и хранилищ данных

pg_lake позволяет интегрировать файлы Iceberg и хранилищ данных в PostgreSQL, превращая его в полноценную lakehouse-систему. Поддерживает транзакции и быстрые запросы к таблицам Iceberg, а также работу с сырыми данными из облачных хранилищ, таких как S3.

🚀Основные моменты:
- Создание и модификация таблиц Iceberg с полными транзакционными гарантиями.
- Запрос и импорт данных из файлов в форматах Parquet, CSV, JSON.
- Экспорт результатов запросов обратно в облачные хранилища.
- Поддержка геопространственных форматов через GDAL.
- Использование встроенного типа данных для полуструктурированных данных.

📌 GitHub: https://github.com/Snowflake-Labs/pg_lake

#postgresql
👍54🔥2
💡 Продвинутый SQL-совет: используйте partial indexes как «селективный ускоритель», но не только для WHERE — ещё и для JOIN-ов.

Большинство разработчиков делают частичные индексы так:
CREATE INDEX idx_active_users ON users(id) WHERE active = true;

Но фишка в том, что partial index может радикально ускорить запросы, где фильтр стоит не в WHERE, а «прячется» в JOIN-условии. Оптимизатор всё равно понимает условие и использует индекс.

Например, у вас есть таблица logs, где 95% строк — архив, и только 5% актуальные. Запрос делает join:


SELECT u.id, l.event
FROM users u
JOIN logs l ON l.user_id = u.id AND l.is_archived = false;


Если делать обычный индекс, он будет огромный. Но partial index:


CREATE INDEX idx_logs_active ON logs(user_id)
WHERE is_archived = false;


Теперь:
- индекс в 20–30 раз меньше
- cache hit rate выше
- планы меняются с seq scan на index scan
- JOIN начинает работать почти как в in-memory базе

Прикольно, что работает даже если в SELECT самого условия нет — главное, чтобы оно было в ON.

Это отличный способ ускорять «холодные» большие таблицы, где часто обращаются только к маленькому активному сегменту.

@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9🔥86
За 2,5 часа прокачаем маркетинг с нейросетями

Технари, проходите мимо — здесь эфир для ребят из маркетинга.

25 ноября приходите на онлайн-интенсив по AI. Вас ждет:

📈 Кейс-стади. COFIX, CDEK, Звук и Gulliver расскажут, как оптимизировали маркетинг с ML и LLM. С результатами в цифрах!

Например, Cofix ускорил обработку клиентских отзывов в 7000 раз. А Gulliver удвоил CTR товарных карточек на маркетплейсах.

👨‍🏫 Воркшоп по промптингу. Эксперты в прямом эфире помогут сегментировать клиентов, персонализировать рассылки и рекламу с ChatGPT.

📅 25 ноября, 11:00–13:30 мск
💻 Онлайн, бесплатно

Зарегистрироваться

erid: 2W5zFJPvCvk
2👎1
Antares SQL Client

Современный, быстрый и ориентированный на продуктивность SQL-клиент с акцентом на пользовательский опыт (UX).

Текущие ключевые функции:
- Подключение к нескольким базам данных одновременно.
- Управление базами данных (добавление/редактирование/удаление).
- Полное управление таблицами, включая индексы и внешние ключи.
- Управление представлениями, триггерами, хранимыми процедурами, функциями и планировщиками (добавление/редактирование/удаление).
- Современная и удобная система вкладок; держите открытыми все необходимые вкладки в вашем рабочем пространстве.
- Заполнение тестовых данных в таблицах для генерации большого объема данных.
- Подсказки и автозаполнение запросов.
- История запросов: поиск по последним 1000 запросам.
- Сохранение запросов, заметок или задач.
- Поддержка SSH-туннелей.
- Режим ручного выполнения транзакций.
- Импорт и экспорт дампов баз данных.
- Настраиваемые горячие клавиши.
- Темная и светлая тема.
- Темы редактора.

https://github.com/antares-sql/antares
5🔥2👍1
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 PYTHON: ХИТРЫЙ ТРЮК С SQL

Если вы работаете с большими таблицами в SQL через Python, и не хотите тянуть всё в память, используйте ленивую подгрузку данных с генерацией чанков. Это особенно полезно, если вы делаете агрегации, фильтрации или сохраняете результат в файл — можно обрабатывать данные частями, не загружая весь датасет сразу.

Удобно, быстро и экономит память. Работает даже с миллионами строк.


import pandas as pd
from sqlalchemy import create_engine

# подключение к базе данных (пример для PostgreSQL)
engine = create_engine("postgresql://user:password@localhost:5432/dbname")

# читаем по 10000 строк за раз
chunk_iter = pd.read_sql("SELECT * FROM big_table", engine, chunksize=10000)

# обработка: сохраняем отфильтрованные строки в файл
with open("filtered_output.csv", "w", encoding="utf-8") as f:
for i, chunk in enumerate(chunk_iter):
filtered = chunk[chunk["amount"] > 1000]
filtered.to_csv(f, index=False, header=(i == 0))


https://www.youtube.com/shorts/y5orXDD2mdU
Please open Telegram to view this post
VIEW IN TELEGRAM
12🔥4👍1
# ⚠️ Расследователи сомневается в AI-сделках Oracle на $300 млрд — и это тревожный сигнал

Сейчас мы видим, как крупнейшие IT-компании (гиперскейлеры) заключают многолетние контракты на искусственный интеллект на сотни миллиардов долларов.

Но никто ещё не проверял, насколько всё это реально окупается. Это - эксперимент на деньгах, технологиях и времени.

💸 Если хотя бы часть этих сделок не сработает, задержится или не принесёт ожидаемой прибыли, удар почувствует вся AI-индустрия - от чипов до облаков.

🧱 Да, AI-бум реален. Но его финансовый фундамент пока как мокрый цемент — выглядит крепко, но легко может просесть.

🎯 Если у Oracle получится - они войдут в список самых влиятельных компаний мира.
Если нет — вся отрасль поймёт, насколько эта гонка на самом деле рискованна и нестабильна.

> 📊 Пузыри не лопаются, когда в них перестают верить.
> Они лопаются, когда кто-то наконец проверяет цифры.

@sqlhub
👍52