Forwarded from Machinelearning
Размер — 1 триллион параметров, при этом:
- 65.8% на SWE-bench Verified, против 50.2% у Claude Sonnet 4 и 40.8% у GPT-4.1
- Лучшие результаты среди открытых моделей по кодингу, математике и агентным задачам
- Архитектура MoE на базе DeepSeek V3, 1 трлн параметров, 32B активны.
Также доступна через API:
- $0.15 за миллион входных токенов (при попадании в кэш)
- $0.60 за миллион входных токенов (если кэш не сработал)
- $2.50 за миллион выходных токенов
Почти в 5 раз дешевле, чем Claude 4 Sonnet и Gemini 2.5 Pro!
@ai_machinelearning_big_data
#kimi #china #llm #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥5❤3👎1
🛠️ AI + SQL = мгновенный доступ к данным в базе
На картинке — простой пример, как с помощью
📦 Что происходит:
1. Человек пишет: *"Show me all tables in the ecommerce database"*
2. AI вызывает
3. Возвращается JSON и сгенерированный ответ на естественном языке
⚙️ Используемые технологии:
-
-
-
🧠 Это база для создания умных ботов-помощников, которые умеют работать с реальными базами данных и выдавать ответы, понятные человеку.
Интерфейс будущего уже здесь — не SQL-запрос, а обычный вопрос на английском.
@sqlhub
На картинке — простой пример, как с помощью
FastMCP
и SQLAlchemy
можно подключить инструмент к базе данных, который по человеческому запросу выводит список всех таблиц.📦 Что происходит:
1. Человек пишет: *"Show me all tables in the ecommerce database"*
2. AI вызывает
list_tables()
, получает список через SQLAlchemy3. Возвращается JSON и сгенерированный ответ на естественном языке
⚙️ Используемые технологии:
-
FastMCP
— для регистрации инструментов и взаимодействия с агентами-
@mcp.tool
— декоратор, позволяющий превращать функции в доступные действия для ИИ-
inspect()
из SQLAlchemy — безопасный способ получить метаданные БД🧠 Это база для создания умных ботов-помощников, которые умеют работать с реальными базами данных и выдавать ответы, понятные человеку.
Интерфейс будущего уже здесь — не SQL-запрос, а обычный вопрос на английском.
@sqlhub
❤7🔥6👍5👎3
This media is not supported in your browser
VIEW IN TELEGRAM
🧠 Исследователь OpenAI Ноам Браун заявил:
"Все эти модные AI-системы с роутерами, обвязками и агентами смоет масштабом.
Будущее — за моделями, которые просто работают хорошо из коробки."
Что это значит?
▪ GPT‑5, похоже, не будет использовать роутеры — то есть, не будет выбирать отдельную подмодель под каждый запрос.
▪ Вместо этого — одна большая универсальная модель, способная справляться со всем сразу.
Но возникает важный вопрос:
Как они собираются держать цену инференса низкой?
Без роутера даже на простой вопрос будет отвечать вся огромная модель — это дорого.
Если OpenAI реально решила эту задачу, это будет революция:
▪ Без костылей
▪ Без сборок из агентов
▪ Просто умная, быстрая и универсальная модель
Следим внимательно. Это может многое изменить.
"Все эти модные AI-системы с роутерами, обвязками и агентами смоет масштабом.
Будущее — за моделями, которые просто работают хорошо из коробки."
Что это значит?
▪ GPT‑5, похоже, не будет использовать роутеры — то есть, не будет выбирать отдельную подмодель под каждый запрос.
▪ Вместо этого — одна большая универсальная модель, способная справляться со всем сразу.
Но возникает важный вопрос:
Как они собираются держать цену инференса низкой?
Без роутера даже на простой вопрос будет отвечать вся огромная модель — это дорого.
Если OpenAI реально решила эту задачу, это будет революция:
▪ Без костылей
▪ Без сборок из агентов
▪ Просто умная, быстрая и универсальная модель
Следим внимательно. Это может многое изменить.
🔥15🤔6👍3👎1🥰1
🧠 Как оценивать качество RAG-систем: метрики и MLflow в действии
Retrieval-Augmented Generation (RAG) — мощная архитектура, но её тонко настраивать сложно. Ответы могут казаться "разумными", даже если они на самом деле некорректны. Как понять, работает ли ваша система так, как надо?
В свежем гайде от CodeCut показано, как системно оценивать качество RAG-моделей, а не надеяться на «на глаз»:
🔹 Метрики качества:
- Context Precision / Recall — насколько релевантны и достаточны извлечённые документы
- Faithfulness — насколько ответ действительно основан на контексте, а не «галлюцинирует»
- Answer Relevance — насколько сам ответ полезен и по теме
🔹 Интеграция с MLflow:
Можно логировать не только метрики, но и:
- Извлечённые документы
- Ответы модели
- Ground truth (если есть)
- Скриншоты или HTML-рендеринг всей цепочки
🔹 Автоматическая разметка:
Используется GPT/Claude для автоматического суждения о faithfulness и relevance — удобно при отсутствии human-annotators.
📌 Вывод:
Если вы строите RAG-решения, важно думать не только о качестве retrieval и LLM по отдельности, но и о том, как оценивать весь pipeline.
Метрики + MLflow дают структуру, чтобы сравнивать улучшения и принимать обоснованные решения.
#RAG #MLflow #LLM #Evaluation #AIProduct
@sqlhub
Retrieval-Augmented Generation (RAG) — мощная архитектура, но её тонко настраивать сложно. Ответы могут казаться "разумными", даже если они на самом деле некорректны. Как понять, работает ли ваша система так, как надо?
В свежем гайде от CodeCut показано, как системно оценивать качество RAG-моделей, а не надеяться на «на глаз»:
🔹 Метрики качества:
- Context Precision / Recall — насколько релевантны и достаточны извлечённые документы
- Faithfulness — насколько ответ действительно основан на контексте, а не «галлюцинирует»
- Answer Relevance — насколько сам ответ полезен и по теме
🔹 Интеграция с MLflow:
Можно логировать не только метрики, но и:
- Извлечённые документы
- Ответы модели
- Ground truth (если есть)
- Скриншоты или HTML-рендеринг всей цепочки
🔹 Автоматическая разметка:
Используется GPT/Claude для автоматического суждения о faithfulness и relevance — удобно при отсутствии human-annotators.
📌 Вывод:
Если вы строите RAG-решения, важно думать не только о качестве retrieval и LLM по отдельности, но и о том, как оценивать весь pipeline.
Метрики + MLflow дают структуру, чтобы сравнивать улучшения и принимать обоснованные решения.
#RAG #MLflow #LLM #Evaluation #AIProduct
@sqlhub
❤6👍3🔥2
Огромная Python-шпаргалка с удобной навигацией!
В репозитории собраны шпаргалки (на русском) по Python и не только, разделённые по категориям. Каждая ссылка ведёт к PDF с нужной темой.
🗂 Кроме Python, есть материалы по Git, CORS, Docker, API, SQL, CI/CD, Kubernetes и другим темам разработки.
👉 https://github.com/Dv-nn/Cheat-Sheet-Python
#Python #Программирование #Шпаргалки
@sqlhub
В репозитории собраны шпаргалки (на русском) по Python и не только, разделённые по категориям. Каждая ссылка ведёт к PDF с нужной темой.
🗂 Кроме Python, есть материалы по Git, CORS, Docker, API, SQL, CI/CD, Kubernetes и другим темам разработки.
👉 https://github.com/Dv-nn/Cheat-Sheet-Python
#Python #Программирование #Шпаргалки
@sqlhub
❤9🔥4🥰2
🚀 Amazon запускает S3 Vectors — и это может перевернуть рынок векторных БД
На первый взгляд — просто новый сервис. На деле — возможно, главная новость для AI-инфраструктуры в 2024.
Когда Amazon представил S3 в 2006, он навсегда изменил подход к хранению данных: больше не нужно думать о дисках — только API и бесконечное масштабирование. S3 Vectors может сделать то же самое с векторными БД.
💡 Почему это важно
1️⃣ Резкое удешевление
- $0.06/GB за хранение, $0.004/TB за запросы
- В 10–400 раз дешевле, чем популярные векторные хостинги
- Подходит для стартапов, особенно с бесплатными AWS-кредитами
2️⃣ Масштабируемость без DevOps
- Храни миллиарды векторов
- Запросы — за сотни миллисекунд
- Без серверов: просто создаёшь *vector bucket* и используешь API
3️⃣ Глубокая интеграция с AWS-экосистемой
- Bedrock (RAG-приложения)
- OpenSearch (tiered storage)
- SageMaker и другие сервисы
- Всё подключается "из коробки"
🛠️ Что можно делать
- Масштабируемый RAG с низкой ценой
- Поиск по смыслу в документах, видео, медизображениях, коду
- Долгосрочная память для AI-агентов
- Семантический корпоративный поиск
📈 Сообщество уже тестирует: среднее время запроса — ~250 мс. Preview-доступ открыт в регионах US East/West, Frankfurt и Sydney.
🔗 https://aws.amazon.com/blogs/aws/introducing-amazon-s3-vectors-first-cloud-storage-with-native-vector-support-at-scale/
Если пробуете — делитесь результатами. Это может быть началом нового стандарта.
@sqlhub
На первый взгляд — просто новый сервис. На деле — возможно, главная новость для AI-инфраструктуры в 2024.
Когда Amazon представил S3 в 2006, он навсегда изменил подход к хранению данных: больше не нужно думать о дисках — только API и бесконечное масштабирование. S3 Vectors может сделать то же самое с векторными БД.
💡 Почему это важно
1️⃣ Резкое удешевление
- $0.06/GB за хранение, $0.004/TB за запросы
- В 10–400 раз дешевле, чем популярные векторные хостинги
- Подходит для стартапов, особенно с бесплатными AWS-кредитами
2️⃣ Масштабируемость без DevOps
- Храни миллиарды векторов
- Запросы — за сотни миллисекунд
- Без серверов: просто создаёшь *vector bucket* и используешь API
3️⃣ Глубокая интеграция с AWS-экосистемой
- Bedrock (RAG-приложения)
- OpenSearch (tiered storage)
- SageMaker и другие сервисы
- Всё подключается "из коробки"
🛠️ Что можно делать
- Масштабируемый RAG с низкой ценой
- Поиск по смыслу в документах, видео, медизображениях, коду
- Долгосрочная память для AI-агентов
- Семантический корпоративный поиск
📈 Сообщество уже тестирует: среднее время запроса — ~250 мс. Preview-доступ открыт в регионах US East/West, Frankfurt и Sydney.
🔗 https://aws.amazon.com/blogs/aws/introducing-amazon-s3-vectors-first-cloud-storage-with-native-vector-support-at-scale/
Если пробуете — делитесь результатами. Это может быть началом нового стандарта.
@sqlhub
❤5👍5🥰3🔥1
🦉 Tonbo — новый игрок в мире embedded-баз данных. В отличие от традиционных key-value хранилищ, использует LSM-дерево поверх Apache Arrow/Parquet, что открывает интересные возможности для аналитических запросов с pushdown-оптимизациями.
Проект находится в активной разработке, но уже примечателен type-safe API через derive-макросы и поддержкой транзакций. Интересно наблюдать, как он будет развивать интеграцию с экосистемой Arrow (DataFusion) в будущих версиях.
🤖 GitHub
@sqlhub
Проект находится в активной разработке, но уже примечателен type-safe API через derive-макросы и поддержкой транзакций. Интересно наблюдать, как он будет развивать интеграцию с экосистемой Arrow (DataFusion) в будущих версиях.
🤖 GitHub
@sqlhub
👍8❤3🔥1
800+ SQL Server Interview Questions and Answers .pdf
1 MB
Подойдёт, чтобы:
— прокачать SQL-навыки с нуля до продвинутого уровня
— быстро освежить синтаксис перед интервью
— попрактиковаться на реальных задачах
Полезно как джунам, так и мидлам. Отличный способ проверить себя и закрыть пробелы.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15🔥5❤3
😈 Немного токсичности — на пользу?
В финальном обзоре от команды AI VK с ICML 2025 — работа, в которой добавление умеренно токсичных текстов в обучающую выборку помогает улучшить ответы LLM, не повышая при этом токсичность. Всё дело в согласованной настройке данных, обучения и инференса (prompting & steering).
💡 Результат — +10% к объёму датасета, рост качества по MMLU и управляемая токсичность за счёт лучшего подавления нежелательных паттернов на инференсе.
В финальном обзоре от команды AI VK с ICML 2025 — работа, в которой добавление умеренно токсичных текстов в обучающую выборку помогает улучшить ответы LLM, не повышая при этом токсичность. Всё дело в согласованной настройке данных, обучения и инференса (prompting & steering).
💡 Результат — +10% к объёму датасета, рост качества по MMLU и управляемая токсичность за счёт лучшего подавления нежелательных паттернов на инференсе.
Telegram
AI VK Hub
Финальная статья из нашей серии обзоров будет про умеренную токсичность в обучении, которая улучшает детоксикацию моделей.
В теории размер обучающего датасета положительно влияет на работу моделей машинного обучения. Большие языковые модели не являются…
В теории размер обучающего датасета положительно влияет на работу моделей машинного обучения. Большие языковые модели не являются…
❤7👍2🔥1
🧠 HASH — открытая база данных с элементами ИИ, которая самостоятельно структурирует информацию и проверяет её достоверность. Проект объединяет данные из разных источников в реальном времени, предлагая удобные инструменты для работы с ними даже не-техническим пользователям.
HASH имеет автономных агентов, которые автоматически дополняют и очищают данные, а в будущем система превратится в полноценную рабочую среду с AI-интерфейсами. Для старта можно использовать облачную версию или развернуть локально.
🤖 GitHub
@sqlhub
HASH имеет автономных агентов, которые автоматически дополняют и очищают данные, а в будущем система превратится в полноценную рабочую среду с AI-интерфейсами. Для старта можно использовать облачную версию или развернуть локально.
🤖 GitHub
@sqlhub
❤3👍3🔥2
🔑 Oracle выпустила масштабные обновления безопасности для своих ключевых продуктов. В июльском патче устранено 309 уязвимостей разной степени критичности, затрагивающих популярные решения компании.
Наибольшую опасность представляли 9 уязвимостей в Java SE, позволяющих удалённое выполнение кода без аутентификации. Серьёзные проблемы обнаружены и в VirtualBox — три критические уязвимости дают возможность скомпрометировать гипервизор из гостевой системы. Обновления уже доступны для всех поддерживаемых версий затронутых продуктов.
🔗 Ссылка - *клик*
@sqlhub
Наибольшую опасность представляли 9 уязвимостей в Java SE, позволяющих удалённое выполнение кода без аутентификации. Серьёзные проблемы обнаружены и в VirtualBox — три критические уязвимости дают возможность скомпрометировать гипервизор из гостевой системы. Обновления уже доступны для всех поддерживаемых версий затронутых продуктов.
🔗 Ссылка - *клик*
@sqlhub
❤4👍2🔥1
🔥 Nhost — свежий взгляд на backend-разработку с открытым исходным кодом. Этот проект предлагает готовую облачную платформу или возможность самому развернуть альтернативу Firebase, но с GraphQL и PostgreSQL под капотом. Вместо NoSQL — привычный SQL, вместо REST — мощный GraphQL API на базе Hasura, а также встроенные аутентификация, хранилище и serverless-функции.
При этом Nhost не привязывает разработчика к конкретному фронтенд-фреймворку. Один и тот же SDK работает с React, Vue, Next.js и даже Flutter. Локальная разработка упрощена благодаря CLI, а для продакшна можно выбрать как managed-решение от создателей, так и развернуть всё на своих серверах через Docker.
🤖 GitHub
@sqlhub
При этом Nhost не привязывает разработчика к конкретному фронтенд-фреймворку. Один и тот же SDK работает с React, Vue, Next.js и даже Flutter. Локальная разработка упрощена благодаря CLI, а для продакшна можно выбрать как managed-решение от создателей, так и развернуть всё на своих серверах через Docker.
🤖 GitHub
@sqlhub
❤8🔥5🥰3👍1
📊 Argilla — инструмент для создания качественных датасетов под AI. Проект помогает разработчикам и экспертам совместно работать над разметкой данных для NLP, LLM и мультимодальных моделей.
Платформа предлагает удобный интерфейс для аннотирования с фильтрами, семантическим поиском и AI-подсказками. Argilla используют в Red Cross и других организациях для задач классификации, RAG и тонкой настройки моделей.
🖥 Github
@sqlhub
Платформа предлагает удобный интерфейс для аннотирования с фильтрами, семантическим поиском и AI-подсказками. Argilla используют в Red Cross и других организациях для задач классификации, RAG и тонкой настройки моделей.
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9👍5🔥4
This media is not supported in your browser
VIEW IN TELEGRAM
Иногда нужно найти пары строк, которые почти совпадают — например, из-за опечатки в одной букве. Такой кейс часто встречается при поиске дублей в именах, email или товарах.
С помощью функции
levenshtein()
из расширения pg_trgm
в PostgreSQL, можно находить строки, отличающиеся ровно на 1 символ. Это удобно для очистки данных, поиска дублей и реализации "умного" поиска в интерфейсе.
-- Убедись, что pg_trgm расширение включено
CREATE EXTENSION IF NOT EXISTS pg_trgm;
-- Найдём строки из таблицы users, у которых name отличается на 1 символ
SELECT a.name AS name1, b.name AS name2
FROM users a
JOIN users b ON a.id < b.id
WHERE levenshtein(a.name, b.name) = 1;
-- Пример: найдёт пары вроде ('Anna', 'Anya') или ('John', 'Joan')
📌Больше видео
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20🔥9❤3👎1🥰1
🦆 DuckDB vs 🐼 pandas: кто быстрее разберётся с «капризным» CSV?
📊 Сценарий
1. pandas
2. DuckDB
💡 Вывод
Если работаете с CSV с нестандартным delimiter’ом, попробуйте прочитать его через DuckDB: детектирует разделители сам и экономит ваше время на ручной настройке.
@sqlhub
📊 Сценарий
1. pandas
read_csv("flight_data.csv")
→ весь файл свалился в одну колонку 2. DuckDB
SELECT * FROM read_csv('flight_data.csv')
→ автоматически подхватил разделитель и выдал аккуратные столбцы💡 Вывод
Если работаете с CSV с нестандартным delimiter’ом, попробуйте прочитать его через DuckDB: детектирует разделители сам и экономит ваше время на ручной настройке.
@sqlhub
👍11❤7🔥5👎2🥰1🤔1
⚡️ Почему лучшие разработчики всегда на шаг впереди?
Потому что они знают, где брать настоящие инсайд!
Оставь “программирование в вакууме” в прошлом, выбирай свой стек — подпишись и погружайся в поток идей, лайфхаков и знаний, которые не найдёшь в открытом доступе.
ИИ: t.iss.one/ai_machinelearning_big_data
Python: t.iss.one/pythonl
Linux: t.iss.one/linuxacademiya
Devops: t.iss.one/DevOPSitsec
Базы данных: t.iss.one/sqlhub
Мл собес t.iss.one/machinelearning_interview
C++ t.iss.one/cpluspluc
Docker: t.iss.one/DevopsDocker
Хакинг: t.iss.one/linuxkalii
МЛ: t.iss.one/machinelearning_ru
Data Science: t.iss.one/data_analysis_ml
Javascript: t.iss.one/javascriptv
C#: t.iss.one/csharp_ci
Java: t.iss.one/java_library
Python собеседования: t.iss.one/python_job_interview
Мобильная разработка: t.iss.one/mobdevelop
Golang: t.iss.one/Golang_google
React: t.iss.one/react_tg
Rust: t.iss.one/rust_code
ИИ: t.iss.one/vistehno
PHP: t.iss.one/phpshka
Android: t.iss.one/android_its
Frontend: t.iss.one/front
Big Data: t.iss.one/bigdatai
МАТЕМАТИКА: t.iss.one/data_math
Kubernets: t.iss.one/kubernetc
Разработка игр: https://t.iss.one/gamedev
Физика: t.iss.one/fizmat
SQL: t.iss.one/databases_tg
Базы данных: t.iss.one/sql_lib
Папка Go разработчика: t.iss.one/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.iss.one/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.iss.one/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.iss.one/addlist/mzMMG3RPZhY2M2Iy
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
😆ИТ-Мемы: t.iss.one/memes_prog
🇬🇧Английский: t.iss.one/english_forprogrammers
🧠ИИ: t.iss.one/vistehno
🖥 Chatgpt для кода в тг: @Chatgpturbobot -
📕Ит-книги: https://t.iss.one/addlist/BkskQciUW_FhNjEy
💼ИТ-вакансии t.iss.one/addlist/_zyy_jQ_QUsyM2Vi
Подпишись, чтобы всегда знать, куда двигаться дальше!
Потому что они знают, где брать настоящие инсайд!
Оставь “программирование в вакууме” в прошлом, выбирай свой стек — подпишись и погружайся в поток идей, лайфхаков и знаний, которые не найдёшь в открытом доступе.
ИИ: t.iss.one/ai_machinelearning_big_data
Python: t.iss.one/pythonl
Linux: t.iss.one/linuxacademiya
Devops: t.iss.one/DevOPSitsec
Базы данных: t.iss.one/sqlhub
Мл собес t.iss.one/machinelearning_interview
C++ t.iss.one/cpluspluc
Docker: t.iss.one/DevopsDocker
Хакинг: t.iss.one/linuxkalii
МЛ: t.iss.one/machinelearning_ru
Data Science: t.iss.one/data_analysis_ml
Javascript: t.iss.one/javascriptv
C#: t.iss.one/csharp_ci
Java: t.iss.one/java_library
Python собеседования: t.iss.one/python_job_interview
Мобильная разработка: t.iss.one/mobdevelop
Golang: t.iss.one/Golang_google
React: t.iss.one/react_tg
Rust: t.iss.one/rust_code
ИИ: t.iss.one/vistehno
PHP: t.iss.one/phpshka
Android: t.iss.one/android_its
Frontend: t.iss.one/front
Big Data: t.iss.one/bigdatai
МАТЕМАТИКА: t.iss.one/data_math
Kubernets: t.iss.one/kubernetc
Разработка игр: https://t.iss.one/gamedev
Физика: t.iss.one/fizmat
SQL: t.iss.one/databases_tg
Базы данных: t.iss.one/sql_lib
Папка Go разработчика: t.iss.one/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.iss.one/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.iss.one/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.iss.one/addlist/mzMMG3RPZhY2M2Iy
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
😆ИТ-Мемы: t.iss.one/memes_prog
🇬🇧Английский: t.iss.one/english_forprogrammers
🧠ИИ: t.iss.one/vistehno
📕Ит-книги: https://t.iss.one/addlist/BkskQciUW_FhNjEy
💼ИТ-вакансии t.iss.one/addlist/_zyy_jQ_QUsyM2Vi
Подпишись, чтобы всегда знать, куда двигаться дальше!
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍3👎3🥰1
⚡️ Replibyte — реалистичные данные для разработки без рисков. Инструмент для безопасного копирования продакшен-данных в тестовые окружения. Поддерживает PostgreSQL, MySQL и MongoDB, автоматически заменяя конфиденциальную информацию на правдоподобные фейковые значения.
Инструмент умеет работать с большими БД (10+ ГБ), сжимать и шифровать данные на лету, а также масштабировать данные до разумного размера. Всё в одном бинарном файле без серверных компонентов.
🤖 GitHub
@sqlhub
Инструмент умеет работать с большими БД (10+ ГБ), сжимать и шифровать данные на лету, а также масштабировать данные до разумного размера. Всё в одном бинарном файле без серверных компонентов.
🤖 GitHub
@sqlhub
❤9👍9🔥4👎1😁1
📊 GridDB — гибридная СУБД для IoT с поддержкой SQL и NoSQL. Этот проект предлагает необычное сочетание: ключ-значение хранилище с возможностью SQL-запросов, что делает его удобным для промышленного IoT.
Инструмент имеет встроенную поддержка временных рядов и распределённую архитектуру, оптимизированную под высокую нагрузку сенсорных данных. Система работает на Linux и предоставляет клиентские библиотеки для Java, Python, Go и других языков. Установка возможна через RPM/DEB-пакеты или сборку из исходников. Для управления есть CLI и WebAPI.
🤖 GitHub
@sqlhub
Инструмент имеет встроенную поддержка временных рядов и распределённую архитектуру, оптимизированную под высокую нагрузку сенсорных данных. Система работает на Linux и предоставляет клиентские библиотеки для Java, Python, Go и других языков. Установка возможна через RPM/DEB-пакеты или сборку из исходников. Для управления есть CLI и WebAPI.
🤖 GitHub
@sqlhub
❤8👍6🔥3👎1
💡 Полезный SQL-трюк: как получить первую строку в каждой группе — без подзапросов и оконных функций (если они недоступны)
Иногда нужно из каждой группы выбрать одну запись, например, самую раннюю по дате. Если у вас нет оконных функций (например, в старом MySQL), используйте трюк с
✅ Этот приём вытаскивает первую покупку каждого клиента без оконных функций.
@sqlhub
Иногда нужно из каждой группы выбрать одну запись, например, самую раннюю по дате. Если у вас нет оконных функций (например, в старом MySQL), используйте трюк с
GROUP BY
и JOIN
:
SELECT t1.*
FROM orders t1
JOIN (
SELECT customer_id, MIN(order_date) AS min_date
FROM orders
GROUP BY customer_id
) t2 ON t1.customer_id = t2.customer_id AND t1.order_date = t2.min_date;
✅ Этот приём вытаскивает первую покупку каждого клиента без оконных функций.
@sqlhub
😁13👍9❤7🔥3👎1