@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10👍1
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥2🥰1
Please open Telegram to view this post
VIEW IN TELEGRAM
👍36❤4🥰1
Также доступна в облаке https://cloud.qdrant.io ★21546
pip install qdrant-client
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤3😁2🔥1
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍3🔥2
⚡️ RushDB — это мгновенная база данных, построенная на базе Neo4j, не требующая моделирования, конфигураций, нормализаций данных и идеально подходит для разработки приложений, DS/ML Ops и быстрого прототипирования.
🌟 Принимает любые данные формате JSON, JSONB и CSV, и самостоятельно нормализует данные, создавая связи между данными, расставляет типы данных и лэйблы на основе передаваемых данных.
☁️ Доступна в облаке и селф-хостед.
🛠 API-first и удобные SDK для разработчиков: Python и TypeScript
🚀 Отлично подходит для стартапов, AI-команд и всех, кто работает с графами
🔐 Лицензия: Apache-2.0
🟢 GitHub
🟢 Website
📖Docs
🌟 Принимает любые данные формате JSON, JSONB и CSV, и самостоятельно нормализует данные, создавая связи между данными, расставляет типы данных и лэйблы на основе передаваемых данных.
☁️ Доступна в облаке и селф-хостед.
🛠 API-first и удобные SDK для разработчиков: Python и TypeScript
🚀 Отлично подходит для стартапов, AI-команд и всех, кто работает с графами
🔐 Лицензия: Apache-2.0
📖Docs
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8🔥5❤4
Основные возможности:
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10❤3🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
Классный сайт для тренировки навыков SQL.
На сайте размещены задачи, которые решаются через базу данных больницы.
Уровни сложности разные — от простых запросов с SELECT до по-настоящему сложных.
Берём на вооружение для практики!
https://www.sql-practice.com/
@sqlhub
На сайте размещены задачи, которые решаются через базу данных больницы.
Уровни сложности разные — от простых запросов с SELECT до по-настоящему сложных.
Берём на вооружение для практики!
https://www.sql-practice.com/
@sqlhub
👍34❤7🔥4
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4
Это самая популярная в мире библиотека обработки данных, но она медленная, и многие библиотеки значительно превзошли ее.
Проблема альтернатив Pandas в том, что никто не хочет изучать новый API.
Давайте посмотрим правде в глаза: люди не будут переносить свои проекты, га другие фреймворки, без особой причины.
Я уже давно работаю с FireDucks
Эта библиотека в разы быстрее Pandas, и вам не придется менять код старых проектов для перехода на нее.
Вы можете изменить *одну* строку кода и весь остальной код будет работать на FireDucks :
import fireducks.pandas as pd
Вы также можете запустить свой код *не* изменяя ни одной строки, используя хук:
python
$ python -mfireducks.imhook yourfile[.]py
FireDucks — это многопоточная библиотека с ускорением компилятора и полностью совместимым с pandas API.
Она быстрее, чем Polars. Ниже приведена ссылка на некоторые бенчмарки, сравнивающие Pandas, Polars и FireDucks.
FireDucks побеждает с отрывом.
⛓️Здесь находится репозиторий FireDucks на GitHub:
https://github.com/fireducks-dev/fireducks
⛓️Если вы хотите пощупать либу, откройте этот пример:
https://github.com/fireducks-dev/fireducks/tree/main/notebooks/nyc_demo
⛓️Если вы хотите сравнить FireDucks с Polars и Pandas, вот еще один блокнот:
https://github.com/fireducks-dev/fireducks/blob/main/notebooks/FireDucks_vs_Pandas_vs_Polars.ipynb
⛓️И наконец, бенчмарки, с которыми стоит ознакомиться:
https://fireducks-dev.github.io/docs/benchmarks/
@sqlhub
#fireducks #Pandas #dataanalysis #datascience #python #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
👎21🤔13👍8👏1😁1
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤3🔥3
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤2
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥25❤3👍1
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤1🔥1
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥1
#machinelearning #deeplearning
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤2
Defog Introspect
Defog Introspect позиционируется как сервис для глубокого исследования ваших данных. Он позволяет:
- Анализировать структурированные данные: Поддерживаются популярные СУБД (PostgreSQL, MySQL, SQLite, BigQuery, Redshift, Snowflake, Databricks) и файлы форматов CSV/Excel.
- Работать с неструктурированными данными: Интеграция PDF-документов, что позволяет получать дополнительные сведения из документации или отчетов.
- Выполнять поиск в интернете: Инструмент способен обращаться к веб-источникам для получения дополнительного контекста, что расширяет возможности анализа данных.
Источник:
Как это работает?
Инструмент использует "умного" AI-агента, который может:
- Преобразовывать текстовые запросы в SQL-запросы (инструмент text_to_sql), что упрощает работу с базами данных.
- Использовать веб-поиск (инструмент web_search) для поиска дополнительной информации и контекста.
- Анализировать PDF-файлы (инструмент pdf_with_citations) с возможностью цитирования источников.
Для реализации этих функций используются передовые модели, такие как:
o3-mini для преобразования текста в SQL.
gemini-2.0-flash для веб-поиска.
claude-3-7-sonnet для работы с PDF и общей оркестрации запросов.
Источник:
https://github.com/defog-ai/introspect
@sqlhub
Defog Introspect позиционируется как сервис для глубокого исследования ваших данных. Он позволяет:
- Анализировать структурированные данные: Поддерживаются популярные СУБД (PostgreSQL, MySQL, SQLite, BigQuery, Redshift, Snowflake, Databricks) и файлы форматов CSV/Excel.
- Работать с неструктурированными данными: Интеграция PDF-документов, что позволяет получать дополнительные сведения из документации или отчетов.
- Выполнять поиск в интернете: Инструмент способен обращаться к веб-источникам для получения дополнительного контекста, что расширяет возможности анализа данных.
Источник:
Как это работает?
Инструмент использует "умного" AI-агента, который может:
- Преобразовывать текстовые запросы в SQL-запросы (инструмент text_to_sql), что упрощает работу с базами данных.
- Использовать веб-поиск (инструмент web_search) для поиска дополнительной информации и контекста.
- Анализировать PDF-файлы (инструмент pdf_with_citations) с возможностью цитирования источников.
Для реализации этих функций используются передовые модели, такие как:
o3-mini для преобразования текста в SQL.
gemini-2.0-flash для веб-поиска.
claude-3-7-sonnet для работы с PDF и общей оркестрации запросов.
Источник:
https://github.com/defog-ai/introspect
@sqlhub
👍8👎2❤1🔥1