Data Engineers
8.99K subscribers
357 photos
74 files
341 links
Free Data Engineering Ebooks & Courses
Download Telegram
Data-Driven Decision Making

Data-driven decision-making (DDDM) involves using data analytics to guide business strategies instead of relying on intuition. Key techniques include A/B testing, forecasting, trend analysis, and KPI evaluation.

1️⃣ A/B Testing & Hypothesis Testing

A/B testing compares two versions of a product, marketing campaign, or website feature to determine which performs better.

Key Metrics in A/B Testing:

Conversion Rate

Click-Through Rate (CTR)

Revenue per User


Steps in A/B Testing:

1. Define the hypothesis (e.g., "Changing the CTA button color will increase clicks").


2. Split users into Group A (control) and Group B (test).


3. Analyze differences using statistical tests.



SQL for A/B Testing:

Calculate average purchase per user in two test groups

SELECT test_group, AVG(purchase_amount) AS avg_purchase  
FROM ab_test_results
GROUP BY test_group;


Run a t-test to check statistical significance (Python)

from scipy.stats import ttest_ind
t_stat, p_value = ttest_ind(group_A['conversion_rate'], group_B['conversion_rate'])
print(f"T-statistic: {t_stat}, P-value: {p_value}")


🔹 P-value < 0.05 → Statistically significant difference.
🔹 P-value > 0.05 → No strong evidence of difference.


2️⃣ Forecasting & Trend Analysis

Forecasting predicts future trends based on historical data.

Time Series Analysis Techniques:

Moving Averages (smooth trends)

Exponential Smoothing (weights recent data more)

ARIMA Models (AutoRegressive Integrated Moving Average)


SQL for Moving Averages:

7-day moving average of sales

SELECT order_date,  
sales,
AVG(sales) OVER (ORDER BY order_date ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) AS moving_avg
FROM sales_data;


Python for Forecasting (Using Prophet)

from fbprophet import Prophet
model = Prophet()
model.fit(df)
future = model.make_future_dataframe(periods=30)
forecast = model.predict(future)
model.plot(forecast)


3️⃣ KPI & Metrics Analysis

KPIs (Key Performance Indicators) measure business performance.

Common Business KPIs:

Revenue Growth Rate → (Current Revenue - Previous Revenue) / Previous Revenue

Customer Retention Rate → Customers at End / Customers at Start

Churn Rate → % of customers lost over time

Net Promoter Score (NPS) → Measures customer satisfaction


SQL for KPI Analysis:

Calculate Monthly Revenue Growth

SELECT month,  
revenue,
LAG(revenue) OVER (ORDER BY month) AS prev_month_revenue,
(revenue - prev_month_revenue) / prev_month_revenue * 100 AS growth_rate
FROM revenue_data;


Python for KPI Dashboard (Using Matplotlib)

import matplotlib.pyplot as plt
plt.plot(df['month'], df['revenue_growth'], marker='o')
plt.title('Monthly Revenue Growth')
plt.xlabel('Month')
plt.ylabel('Growth Rate (%)')
plt.show()


4️⃣ Real-Life Use Cases of Data-Driven Decisions

📌 E-commerce: Optimize pricing based on customer demand trends.
📌 Finance: Predict stock prices using time series forecasting.
📌 Marketing: Improve email campaign conversion rates with A/B testing.
📌 Healthcare: Identify disease patterns using predictive analytics.


Mini Task for You: Write an SQL query to calculate the customer churn rate for a subscription-based company.

Data Analyst Roadmap: 👇
https://t.iss.one/sqlspecialist/1159

Like this post if you want me to continue covering all the topics! ❤️

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
3👍1
𝟲 𝗙𝗥𝗘𝗘 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗠𝗮𝘀𝘁𝗲𝗿 𝗙𝘂𝘁𝘂𝗿𝗲-𝗣𝗿𝗼𝗼𝗳 𝗦𝗸𝗶𝗹𝗹𝘀 𝗶𝗻 𝟮𝟬𝟮𝟱😍

Want to Stay Ahead in 2025? Learn These 6 In-Demand Skills for FREE!🚀

The future of work is evolving fast, and mastering the right skills today can set you up for big success tomorrow🎯

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3FcwrZK

Enjoy Learning ✅️
Data Analyst vs Data Engineer: Must-Know Differences

Data Analyst:
- Role: Focuses on analyzing, interpreting, and visualizing data to extract insights that inform business decisions.
- Best For: Those who enjoy working directly with data to find patterns, trends, and actionable insights.
- Key Responsibilities:
- Collecting, cleaning, and organizing data.
- Using tools like Excel, Power BI, Tableau, and SQL to analyze data.
- Creating reports and dashboards to communicate insights to stakeholders.
- Collaborating with business teams to provide data-driven recommendations.
- Skills Required:
- Strong analytical skills and proficiency with data visualization tools.
- Expertise in SQL, Excel, and reporting tools.
- Familiarity with statistical analysis and business intelligence.
- Outcome: Data analysts focus on making sense of data to guide decision-making processes in business, marketing, finance, etc.

Data Engineer:
- Role: Focuses on designing, building, and maintaining the infrastructure that allows data to be stored, processed, and analyzed efficiently.
- Best For: Those who enjoy working with the technical aspects of data management and creating the architecture that supports large-scale data analysis.
- Key Responsibilities:
- Building and managing databases, data warehouses, and data pipelines.
- Developing and maintaining ETL (Extract, Transform, Load) processes to move data between systems.
- Ensuring data quality, accessibility, and security.
- Working with big data technologies like Hadoop, Spark, and cloud platforms (AWS, Azure, Google Cloud).
- Skills Required:
- Proficiency in programming languages like Python, Java, or Scala.
- Expertise in database management and big data tools.
- Strong understanding of data architecture and cloud technologies.
- Outcome: Data engineers focus on creating the infrastructure and pipelines that allow data to flow efficiently into systems where it can be analyzed by data analysts or data scientists.

Data analysts work with the data to extract insights and help make data-driven decisions, while data engineers build the systems and infrastructure that allow data to be stored, processed, and analyzed. Data analysts focus more on business outcomes, while data engineers are more involved with the technical foundation that supports data analysis.

I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://t.iss.one/DataSimplifier

Like this post for more content like this 👍♥️

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
👍1
Forwarded from Artificial Intelligence
𝗕𝗼𝗼𝘀𝘁 𝗬𝗼𝘂𝗿 𝗗𝗮𝘁𝗮 𝗣𝗿𝗼𝗱𝘂𝗰𝘁𝗶𝘃𝗶𝘁𝘆 𝘄𝗶𝘁𝗵 𝗧𝗵𝗶𝘀 𝗔𝗜 𝗧𝗼𝗼𝗹 𝗘𝘃𝗲𝗿𝘆 𝗔𝗻𝗮𝗹𝘆𝘀𝘁 𝗡𝗲𝗲𝗱𝘀 𝗶𝗻 𝟮𝟬𝟮𝟱!😍

Tired of Wasting Hours on SQL, Cleaning & Dashboards? Meet Your New Data Assistant!🗣🚀

If you’re a data analyst, BI developer, or even a student, you know the pain of spending hours⏰️

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4jbJ9G5

Just smart automation that gives you time to focus on strategic decisions and storytelling✅️
SQL Cheatsheet 📝

This SQL cheatsheet is designed to be your quick reference guide for SQL programming. Whether you’re a beginner learning how to query databases or an experienced developer looking for a handy resource, this cheatsheet covers essential SQL topics.

1. Database Basics
- CREATE DATABASE db_name;
- USE db_name;

2. Tables
- Create Table: CREATE TABLE table_name (col1 datatype, col2 datatype);
- Drop Table: DROP TABLE table_name;
- Alter Table: ALTER TABLE table_name ADD column_name datatype;

3. Insert Data
- INSERT INTO table_name (col1, col2) VALUES (val1, val2);

4. Select Queries
- Basic Select: SELECT * FROM table_name;
- Select Specific Columns: SELECT col1, col2 FROM table_name;
- Select with Condition: SELECT * FROM table_name WHERE condition;

5. Update Data
- UPDATE table_name SET col1 = value1 WHERE condition;

6. Delete Data
- DELETE FROM table_name WHERE condition;

7. Joins
- Inner Join: SELECT * FROM table1 INNER JOIN table2 ON table1.col = table2.col;
- Left Join: SELECT * FROM table1 LEFT JOIN table2 ON table1.col = table2.col;
- Right Join: SELECT * FROM table1 RIGHT JOIN table2 ON table1.col = table2.col;

8. Aggregations
- Count: SELECT COUNT(*) FROM table_name;
- Sum: SELECT SUM(col) FROM table_name;
- Group By: SELECT col, COUNT(*) FROM table_name GROUP BY col;

9. Sorting & Limiting
- Order By: SELECT * FROM table_name ORDER BY col ASC|DESC;
- Limit Results: SELECT * FROM table_name LIMIT n;

10. Indexes
- Create Index: CREATE INDEX idx_name ON table_name (col);
- Drop Index: DROP INDEX idx_name;

11. Subqueries
- SELECT * FROM table_name WHERE col IN (SELECT col FROM other_table);

12. Views
- Create View: CREATE VIEW view_name AS SELECT * FROM table_name;
- Drop View: DROP VIEW view_name;

Here you can find SQL Interview Resources👇
https://t.iss.one/DataSimplifier

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
👍1
Forwarded from Artificial Intelligence
𝗙𝗿𝗲𝗲 𝗢𝗿𝗮𝗰𝗹𝗲 𝗔𝗜 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝘁𝗼 𝗕𝗼𝗼𝘀𝘁 𝗬𝗼𝘂𝗿 𝗖𝗮𝗿𝗲𝗲𝗿😍

Here’s your chance to build a solid foundation in artificial intelligence with the Oracle AI Foundations Associate course — absolutely FREE!💻📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3FfFOrC

No registration fee. No prior AI experience needed. Just pure learning to future-proof your career!✅️
👍1
Forwarded from Artificial Intelligence
𝟳+ 𝗙𝗿𝗲𝗲 𝗚𝗼𝗼𝗴𝗹𝗲 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝘁𝗼 𝗕𝗼𝗼𝘀𝘁 𝗬𝗼𝘂𝗿 𝗖𝗮𝗿𝗲𝗲𝗿😍

Here’s your golden chance to upskill with free, industry-recognized certifications from Google—all without spending a rupee!💰📌

These beginner-friendly courses cover everything from digital marketing to data tools like Google Ads, Analytics, and more⬇️

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3H2YJX7

Tag them or share this post!✅️
𝟓-𝐒𝐭𝐞𝐩 𝐑𝐨𝐚𝐝𝐦𝐚𝐩 𝐭𝐨 𝐒𝐰𝐢𝐭𝐜𝐡 𝐢𝐧𝐭𝐨 𝐭𝐡𝐞 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐬 𝐅𝐢𝐞𝐥𝐝

💁‍♀️𝐁𝐮𝐢𝐥𝐝 𝐊𝐞𝐲 𝐒𝐤𝐢𝐥𝐥𝐬: Focus on core skills—Excel, SQL, Power BI, and Python.

💁‍♀️𝐇𝐚𝐧𝐝𝐬-𝐎𝐧 𝐏𝐫𝐨𝐣𝐞𝐜𝐭𝐬: Apply your skills to real-world data sets. Projects like sales analysis or customer segmentation show your practical experience. You can find projects on Youtube.

💁‍♀️𝐅𝐢𝐧𝐝 𝐚 𝐌𝐞𝐧𝐭𝐨𝐫: Connect with someone experienced in data analytics for guidance(like me 😅). They can provide valuable insights, feedback, and keep you on track.

💁‍♀️𝐂𝐫𝐞𝐚𝐭𝐞 𝐏𝐨𝐫𝐭𝐟𝐨𝐥𝐢𝐨: Compile your projects in a portfolio or on GitHub. A solid portfolio catches a recruiter’s eye.

💁‍♀️𝐏𝐫𝐚𝐜𝐭𝐢𝐜𝐞 𝐟𝐨𝐫 𝐈𝐧𝐭𝐞𝐫𝐯𝐢𝐞𝐰𝐬: Practice SQL queries and Python coding challenges on Hackerrank & LeetCode. Strengthening your problem-solving skills will prepare you for interviews.
👍1
𝟲 𝗙𝗥𝗘𝗘 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗠𝗮𝘀𝘁𝗲𝗿 𝗣𝘆𝘁𝗵𝗼𝗻, 𝗦𝗤𝗟 & 𝗠𝗟 𝗶𝗻 𝟮𝟬𝟮𝟱😍

Looking to break into data analytics, data science, or machine learning this year?💻

These 6 free online courses from world-class universities and tech giants like Harvard, Stanford, MIT, Google, and IBM will help you build a job-ready skillset👨‍💻📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4ksUTFi

Enjoy Learning ✅️
ML Engineer vs AI Engineer

ML Engineer / MLOps

-Focuses on the deployment of machine learning models.
-Bridges the gap between data scientists and production environments.
-Designing and implementing machine learning models into production.
-Automating and orchestrating ML workflows and pipelines.
-Ensuring reproducibility, scalability, and reliability of ML models.
-Programming: Python, R, Java
-Libraries: TensorFlow, PyTorch, Scikit-learn
-MLOps: MLflow, Kubeflow, Docker, Kubernetes, Git, Jenkins, CI/CD tools

AI Engineer / Developer

- Applying AI techniques to solve specific problems.
- Deep knowledge of AI algorithms and their applications.
- Developing and implementing AI models and systems.
- Building and integrating AI solutions into existing applications.
- Collaborating with cross-functional teams to understand requirements and deliver AI-powered solutions.
- Programming: Python, Java, C++
- Libraries: TensorFlow, PyTorch, Keras, OpenCV
- Frameworks: ONNX, Hugging Face
👍1
𝟱 𝗣𝗼𝘄𝗲𝗿𝗳𝘂𝗹 𝗣𝘆𝘁𝗵𝗼𝗻 𝗣𝗿𝗼𝗷𝗲𝗰𝘁𝘀 𝘁𝗼 𝗔𝗱𝗱 𝘁𝗼 𝗬𝗼𝘂𝗿 𝗥𝗲𝘀𝘂𝗺𝗲 𝗶𝗻 𝟮𝟬𝟮𝟱😍

Looking to land an internship, secure a tech job, or start freelancing in 2025?👨‍💻

Python projects are one of the best ways to showcase your skills and stand out in today’s competitive job market🗣📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4kvrfiL

Stand out in today’s competitive job market✅️
Here are few Important SQL interview questions with topics

Basic SQL Concepts:

Explain the difference between SQL and NoSQL databases.
What are the common data types in SQL?

Querying:

How do you retrieve all records from a table named "Customers"?
What is the difference between SELECT and SELECT DISTINCT in a query?
Explain the purpose of the WHERE clause in SQL queries.

Joins:
Describe the types of joins in SQL (INNER JOIN, LEFT JOIN, RIGHT JOIN, FULL JOIN).
How would you retrieve data from two tables using an INNER JOIN?

Aggregate Functions:
What are aggregate functions in SQL? Can you name a few?
How do you calculate the average, sum, and count of a column in a SQL query?

Grouping and Filtering:
Explain the GROUP BY clause and its use in SQL.
How would you filter the results of an SQL query using the HAVING clause?

Subqueries:
What is a subquery, and when would you use one in SQL?
Provide an example of a subquery in an SQL statement.

Indexes and Optimization:
Why are indexes important in a database?
How would you optimize a slow-running SQL query?

Normalization and Data Integrity:
What is database normalization, and why is it important?
How can you enforce data integrity in a SQL database?

Transactions:
What is a SQL transaction, and why would you use it?
Explain the concepts of ACID properties in database transactions.

Views and Stored Procedures:
What is a database view, and when would you create one?
What is a stored procedure, and how does it differ from a regular SQL query?

Advanced SQL:
Can you write a recursive SQL query, and when would you use recursion?
Explain the concept of window functions in SQL.

These questions cover a range of SQL topics, from basic concepts to more advanced techniques, and can help assess a candidate's knowledge and skills in SQL :)

Like this post if you need more 👍❤️

Hope it helps :)
👍1
Forwarded from Artificial Intelligence
𝟱 𝗙𝗿𝗲𝗲 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗞𝗶𝗰𝗸𝘀𝘁𝗮𝗿𝘁 𝗬𝗼𝘂𝗿 𝗖𝗮𝗿𝗲𝗲𝗿 𝗶𝗻 𝟮𝟬𝟮𝟱 (𝗪𝗶𝘁𝗵 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗲𝘀!)😍

Start Here — With Zero Cost and Maximum Value!💰📌

If you’re aiming for a career in data analytics, now is the perfect time to get started🚀

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3Fq7E4p

A great starting point if you’re brand new to the field✅️
1. How to change a table name in SQL?
This is the command to change a table name in SQL:
ALTER TABLE table_name
RENAME TO new_table_name;
We will start off by giving the keywords ALTER TABLE, then we will follow it up by giving the original name of the table, after that, we will give in the keywords RENAME TO and finally, we will give the new table name.

2. How to use LIKE in SQL?
The LIKE operator checks if an attribute value matches a given string pattern. Here is an example of LIKE operator
SELECT * FROM employees WHERE first_name like ‘Steven’;
With this command, we will be able to extract all the records where the first name is like “Steven”.

3. If we drop a table, does it also drop related objects like constraints, indexes, columns, default, views and sorted procedures?
Yes, SQL server drops all related objects, which exists inside a table like constraints, indexes, columns, defaults etc. But dropping a table will not drop views and sorted procedures as they exist outside the table.

4. Explain SQL Constraints.
SQL Constraints are used to specify the rules of data type in a table. They can be specified while creating and altering the table. The following are the constraints in SQL: NOT NULL CHECK DEFAULT UNIQUE PRIMARY KEY FOREIGN KEY
👍2
𝟯 𝗙𝗿𝗲𝗲 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗔𝘇𝘂𝗿𝗲 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗣𝗮𝘁𝗵𝘀 𝘁𝗼 𝗠𝗮𝘀𝘁𝗲𝗿 𝗗𝗮𝘁𝗮 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝗶𝗻𝗴😍

📊 Ready to Dive Into the World of Data Engineering and Analytics?📌

If you’re planning to enter the field of data engineering or want to level up your cloud-based analytics skills, Microsoft Azure has just what you need — for free!👨‍🎓🎊

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3ZoW2Fy

Enjoy Learning ✅️
𝗙𝗿𝗲𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗞𝗶𝗰𝗸𝘀𝘁𝗮𝗿𝘁 𝗬𝗼𝘂𝗿 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗝𝗼𝘂𝗿𝗻𝗲𝘆 𝗶𝗻 𝟮𝟬𝟮𝟱😍

Ready to upskill in data science for free?🚀

Here are 3 amazing courses to build a strong foundation in Exploratory Data Analysis, SQL, and Python👨‍💻📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/43GspSO

Take the first step towards your dream career!✅️
Beyond Data Analytics: Expanding Your Career Horizons

Once you've mastered core and advanced analytics skills, it's time to explore career growth opportunities beyond traditional data analyst roles. Here are some potential paths:

1️⃣ Data Science & AI Specialist 🤖

Dive deeper into machine learning, deep learning, and AI-powered analytics.

Learn advanced Python libraries like TensorFlow, PyTorch, and Scikit-Learn.

Work on predictive modeling, NLP, and AI automation.


2️⃣ Data Engineering 🏗️

Shift towards building scalable data infrastructure.

Master ETL pipelines, cloud databases (BigQuery, Snowflake, Redshift), and Apache Spark.

Learn Docker, Kubernetes, and Airflow for workflow automation.


3️⃣ Business Intelligence & Data Strategy 📊

Transition into high-level decision-making roles.

Become a BI Consultant or Data Strategist, focusing on storytelling and business impact.

Lead data-driven transformation projects in organizations.


4️⃣ Product Analytics & Growth Strategy 📈

Work closely with product managers to optimize user experience and engagement.

Use A/B testing, cohort analysis, and customer segmentation to drive product decisions.

Learn Mixpanel, Amplitude, and Google Analytics.


5️⃣ Data Governance & Privacy Expert 🔐

Specialize in data compliance, security, and ethical AI.

Learn about GDPR, CCPA, and industry regulations.

Work on data quality, lineage, and metadata management.


6️⃣ AI-Powered Automation & No-Code Analytics 🚀

Explore AutoML tools, AI-assisted analytics, and no-code platforms like Alteryx and DataRobot.

Automate repetitive tasks and create self-service analytics solutions for businesses.


7️⃣ Freelancing & Consulting 💼

Offer data analytics services as an independent consultant.

Build a personal brand through LinkedIn, Medium, or YouTube.

Monetize your expertise via online courses, coaching, or workshops.


8️⃣ Transitioning to Leadership Roles

Become a Data Science Manager, Head of Analytics, or Chief Data Officer.

Focus on mentoring teams, driving data strategy, and influencing business decisions.

Develop stakeholder management, communication, and leadership skills.


Mastering data analytics opens up multiple career pathways—whether in AI, business strategy, engineering, or leadership. Choose your path, keep learning, and stay ahead of industry trends! 🚀

#dataanalytics
👍1
𝟯 𝗙𝗿𝗲𝗲 𝗢𝗿𝗮𝗰𝗹𝗲 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝘁𝗼 𝗙𝘂𝘁𝘂𝗿𝗲-𝗣𝗿𝗼𝗼𝗳 𝗬𝗼𝘂𝗿 𝗧𝗲𝗰𝗵 𝗖𝗮𝗿𝗲𝗲𝗿 𝗶𝗻 𝟮𝟬𝟮𝟱😍

Oracle, one of the world’s most trusted tech giants, offers free training and globally recognized certifications to help you build expertise in cloud computing, Java, and enterprise applications.👨‍🎓📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3GZZUXi

All at zero cost!🎊✅️
🔥1
🔍 Mastering Spark: 20 Interview Questions Demystified!

1️⃣ MapReduce vs. Spark: Learn how Spark achieves 100x faster performance compared to MapReduce.
2️⃣ RDD vs. DataFrame: Unravel the key differences between RDD and DataFrame, and discover what makes DataFrame unique.
3️⃣ DataFrame vs. Datasets: Delve into the distinctions between DataFrame and Datasets in Spark.
4️⃣ RDD Operations: Explore the various RDD operations that power Spark.
5️⃣ Narrow vs. Wide Transformations: Understand the differences between narrow and wide transformations in Spark.
6️⃣ Shared Variables: Discover the shared variables that facilitate distributed computing in Spark.
7️⃣ Persist vs. Cache: Differentiate between the persist and cache functionalities in Spark.
8️⃣ Spark Checkpointing: Learn about Spark checkpointing and how it differs from persisting to disk.
9️⃣ SparkSession vs. SparkContext: Understand the roles of SparkSession and SparkContext in Spark applications.
🔟 spark-submit Parameters: Explore the parameters to specify in the spark-submit command.
1️⃣1️⃣ Cluster Managers in Spark: Familiarize yourself with the different types of cluster managers available in Spark.
1️⃣2️⃣ Deploy Modes: Learn about the deploy modes in Spark and their significance.
1️⃣3️⃣ Executor vs. Executor Core: Distinguish between executor and executor core in the Spark ecosystem.
1️⃣4️⃣ Shuffling Concept: Gain insights into the shuffling concept in Spark and its importance.
1️⃣5️⃣ Number of Stages in Spark Job: Understand how to decide the number of stages created in a Spark job.
1️⃣6️⃣ Spark Job Execution Internals: Get a peek into how Spark internally executes a program.
1️⃣7️⃣ Direct Output Storage: Explore the possibility of directly storing output without sending it back to the driver.
1️⃣8️⃣ Coalesce and Repartition: Learn about the applications of coalesce and repartition in Spark.
1️⃣9️⃣ Physical and Logical Plan Optimization: Uncover the optimization techniques employed in Spark's physical and logical plans.
2️⃣0️⃣ Treereduce and Treeaggregate: Discover why treereduce and treeaggregate are preferred over reduceByKey and aggregateByKey in certain scenarios.

Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
👍1
Forwarded from Artificial Intelligence
𝗠𝗮𝘀𝘁𝗲𝗿 𝗣𝘆𝘁𝗵𝗼𝗻 𝗙𝘂𝗻𝗱𝗮𝗺𝗲𝗻𝘁𝗮𝗹𝘀 𝗳𝗼𝗿 𝗧𝗲𝗰𝗵 & 𝗗𝗮𝘁𝗮 𝗥𝗼𝗹𝗲𝘀 – 𝗙𝗿𝗲𝗲 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿 𝗚𝘂𝗶𝗱𝗲😍

If you’re aiming for a role in tech, data analytics, or software development, one of the most valuable skills you can master is Python🎯

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4jg88I8

All The Best 🎊
👍1