Сенсорно-независимые данные MODIS & VIIRS LAI/FPAR (2000–2022)
Набор пространственных данных Sensor-Independent MODIS & VIIRS LAI/FPAR CDR (2000–2022) охватывает важнейшие биофизические параметры: индекс листовой поверхности (Leaf Area Index, LAI) и долю фотосинтетически активной радиации (Fraction of Photosynthetically Active Radiation, FPAR или FAPAR*), необходимые для характеристики наземных экосистем.
При подготовке данных особое внимание уделялось ограничениям, имевшимся в существующих глобальных продуктах LAI/FPAR, в том числе, проблемам пространственно-временной согласованности и точности. Методика создания набора данных описана в:
📖 Pu, J., Yan, K., Roy, S., Zhu, Z., Rautiainen, M., Knyazikhin, Y., & Myneni, R. B. (2024). Sensor-independent LAI/FPAR CDR: reconstructing a global sensor-independent climate data record of MODIS and VIIRS LAI/FPAR from 2000 to 2022. Earth System Science Data, 16(1), 15–34. https://doi.org/10.5194/essd-16-15-2024
Данные создавались как сенсорно-независимые на основе стандартных продуктов LAI/FPAR Terra MODIS, Aqua MODIS и VIIRS. Они охватывают временной интервал с 2000 по 2022 год и содержат данные LAI/FPAR в различных пространственных разрешениях: 500 м, 5 км и 0,05° с шагами по времени 8 суток и два месяца. Набор данных доступен в синусоидальной проекции, а также в WGS 1984.
Доступ к данным:
🛢 Zenodo
🌍 Google Earth Engine
📊 Схема создания данных.
*FPAR или FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) — доля падающей фотосинтетически активной радиации (400–700 нм), поглощаемой растительностью.
#данные #климат #GEE
Набор пространственных данных Sensor-Independent MODIS & VIIRS LAI/FPAR CDR (2000–2022) охватывает важнейшие биофизические параметры: индекс листовой поверхности (Leaf Area Index, LAI) и долю фотосинтетически активной радиации (Fraction of Photosynthetically Active Radiation, FPAR или FAPAR*), необходимые для характеристики наземных экосистем.
При подготовке данных особое внимание уделялось ограничениям, имевшимся в существующих глобальных продуктах LAI/FPAR, в том числе, проблемам пространственно-временной согласованности и точности. Методика создания набора данных описана в:
📖 Pu, J., Yan, K., Roy, S., Zhu, Z., Rautiainen, M., Knyazikhin, Y., & Myneni, R. B. (2024). Sensor-independent LAI/FPAR CDR: reconstructing a global sensor-independent climate data record of MODIS and VIIRS LAI/FPAR from 2000 to 2022. Earth System Science Data, 16(1), 15–34. https://doi.org/10.5194/essd-16-15-2024
Данные создавались как сенсорно-независимые на основе стандартных продуктов LAI/FPAR Terra MODIS, Aqua MODIS и VIIRS. Они охватывают временной интервал с 2000 по 2022 год и содержат данные LAI/FPAR в различных пространственных разрешениях: 500 м, 5 км и 0,05° с шагами по времени 8 суток и два месяца. Набор данных доступен в синусоидальной проекции, а также в WGS 1984.
Доступ к данным:
🛢 Zenodo
🌍 Google Earth Engine
📊 Схема создания данных.
*FPAR или FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) — доля падающей фотосинтетически активной радиации (400–700 нм), поглощаемой растительностью.
#данные #климат #GEE
Симметричный конус Таранаки
Среди пастбищ Северного острова Новой Зеландии возвышается заснеженный конус вулкана Таранаки (высота 2518 метров), окруженный тёмно-зелёным лесом.
На снимке спутника Landsat 8, сделанном в июне 2023 года, гора Таранаки (Taranaki) находится в центре. К северо-западу от неё видны два старых и потухших вулкана, Каитаке (Kaitake) и Пуакаи (Pouakai).
В самой широкой части кольца вокруг горы преобладают леса из риму (rimu) и камахи (kāmahi) — высоких вечнозеленых деревьев родом из Новой Зеландии. Выше находится “Лес гоблинов”, состоящий из сплетённых и перекрученных зарослей всё того же камахи. Ещё выше, леса уступают место тонким поясам субальпийской и альпийской растительности.
Нынешний изящный и симметричный вид вулкана не должен вводить в заблуждение. По некоторым подсчетам, его конструкция разрушалась и восстанавливалась 16 раз, и каждый цикл приводил к сходу со склонов горы крупных обломочных лавин. Крутые склоны, рыхлые осадочные породы, большое количество осадков — всё это способствует склонности горы к обрушению. Отложения этих лавин, накопившись, образовали полуостров, на котором стоит гора.
Последнее извержение вулкана Таранаки произошло более 200 лет назад, и ученые дают 30–50-процентную вероятность того, что он начнёт извергаться в ближайшие 50 лет. Периодически со склонов горы сходят селевые потоки.
Но несмотря на все присущие вулкану угрозы, симметричный конус Таранаки стал культовым в новозеландской культуре. Он изображен на этикетках товаров, почтовых марках и даже на валюте этой страны.
#снимки
Среди пастбищ Северного острова Новой Зеландии возвышается заснеженный конус вулкана Таранаки (высота 2518 метров), окруженный тёмно-зелёным лесом.
На снимке спутника Landsat 8, сделанном в июне 2023 года, гора Таранаки (Taranaki) находится в центре. К северо-западу от неё видны два старых и потухших вулкана, Каитаке (Kaitake) и Пуакаи (Pouakai).
В самой широкой части кольца вокруг горы преобладают леса из риму (rimu) и камахи (kāmahi) — высоких вечнозеленых деревьев родом из Новой Зеландии. Выше находится “Лес гоблинов”, состоящий из сплетённых и перекрученных зарослей всё того же камахи. Ещё выше, леса уступают место тонким поясам субальпийской и альпийской растительности.
Нынешний изящный и симметричный вид вулкана не должен вводить в заблуждение. По некоторым подсчетам, его конструкция разрушалась и восстанавливалась 16 раз, и каждый цикл приводил к сходу со склонов горы крупных обломочных лавин. Крутые склоны, рыхлые осадочные породы, большое количество осадков — всё это способствует склонности горы к обрушению. Отложения этих лавин, накопившись, образовали полуостров, на котором стоит гора.
Последнее извержение вулкана Таранаки произошло более 200 лет назад, и ученые дают 30–50-процентную вероятность того, что он начнёт извергаться в ближайшие 50 лет. Периодически со склонов горы сходят селевые потоки.
Но несмотря на все присущие вулкану угрозы, симметричный конус Таранаки стал культовым в новозеландской культуре. Он изображен на этикетках товаров, почтовых марках и даже на валюте этой страны.
#снимки
🙏Благодарим, расположив в календарном порядке, телеграм-каналы, делавшие репосты и цитировавшие наши публикации в сентябре 2024 года:
* @gis_proxima
* @twrussia
* @IngeniumNotes
* @meteovestiru
* @rscc_rscc
* @UzbekistanTtransparentWorld
* @bmpd_cast
* Ядерный буревестник
* @shironin_space
* @solar_lunar
* @grishkafilippov
* @wind_vostok
* @newspacecorp
* @control_space_channel
* @naukaidannye
* @ykuthydromet
* @Cosmonaut_without_a_spacesuit
* @sergeyshakhmatov
Спасибо, коллеги!
* @gis_proxima
* @twrussia
* @IngeniumNotes
* @meteovestiru
* @rscc_rscc
* @UzbekistanTtransparentWorld
* @bmpd_cast
* Ядерный буревестник
* @shironin_space
* @solar_lunar
* @grishkafilippov
* @wind_vostok
* @newspacecorp
* @control_space_channel
* @naukaidannye
* @ykuthydromet
* @Cosmonaut_without_a_spacesuit
* @sergeyshakhmatov
Спасибо, коллеги!
Forwarded from ИКИ РАН (пресс-служба)
Третья международная конференция по космическому образованию «Дорога в космос» начинается. День 1️⃣
Открытие конференции — 9:30
Начало пленарных заседаний — 9:40
📹 Трансляция пленарных заседаний
🔗 Программа конференции
Цели конференции — обсудить задачи и проблемы космического образования в России и за рубежом в школах, вузах и аспирантуре, вопросы популяризации космических исследований и привлечения молодежи для будущей работы в космической отрасли.
Открытие конференции — 9:30
Начало пленарных заседаний — 9:40
📹 Трансляция пленарных заседаний
🔗 Программа конференции
Цели конференции — обсудить задачи и проблемы космического образования в России и за рубежом в школах, вузах и аспирантуре, вопросы популяризации космических исследований и привлечения молодежи для будущей работы в космической отрасли.
Please open Telegram to view this post
VIEW IN TELEGRAM
launches_2024-09.csv
10.2 KB
Список космических и суборбитальных запусков в сентябре 2024 года.
FABDEM V1.2
⛰FABDEM (Forest And Buildings removed Copernicus DEM) — это глобальная карта высот, которая удаляет смещения высоты зданий и деревьев из цифровой модели рельефа (ЦМР) Copernicus GLO 30. Данные доступны с шагом сетки 1” (примерно 30 м на экваторе) для всего земного шара.
FABDEM V1.2 — обновленная версия FABDEM V1.0. Изменения подробно описаны в файле FABDEM-V1-2 Changelog.pdf, приложенном к данным. Вместе с данными поставляется geojson тайлов FABDEM.
🛢 FABDEM V1.2
Данные FABDEM распространяются по лицензии Creative Commons “CC BY-NC-SA 4.0”.
📖 Сравнение FABDEM V1.2 и FABDEM V1.0.
#DEM #данные
⛰FABDEM (Forest And Buildings removed Copernicus DEM) — это глобальная карта высот, которая удаляет смещения высоты зданий и деревьев из цифровой модели рельефа (ЦМР) Copernicus GLO 30. Данные доступны с шагом сетки 1” (примерно 30 м на экваторе) для всего земного шара.
FABDEM V1.2 — обновленная версия FABDEM V1.0. Изменения подробно описаны в файле FABDEM-V1-2 Changelog.pdf, приложенном к данным. Вместе с данными поставляется geojson тайлов FABDEM.
🛢 FABDEM V1.2
Данные FABDEM распространяются по лицензии Creative Commons “CC BY-NC-SA 4.0”.
📖 Сравнение FABDEM V1.2 и FABDEM V1.0.
#DEM #данные
CGMS-52-CMA-WP-19_PPT.pdf
1.4 MB
Космонавты наблюдают земную поверхность с помощью гиперспектрометра [ссылка]
30 сентября по программе полёта российского сегмента Международной космической станции космонавты выполняли эксперименты по наблюдению Земли: “Экон-М” (фотосъёмка Земли для оценки экологической обстановки) и “Ураган” — гиперспектральная съёмка земной поверхности в видимом и ближнем инфракрасном диапазонах спектра.
#МКС
30 сентября по программе полёта российского сегмента Международной космической станции космонавты выполняли эксперименты по наблюдению Земли: “Экон-М” (фотосъёмка Земли для оценки экологической обстановки) и “Ураган” — гиперспектральная съёмка земной поверхности в видимом и ближнем инфракрасном диапазонах спектра.
#МКС
Forwarded from Российская академия наук
🛰️🌱 Российские учёные разработали систему мониторинга посевов с помощью спутников. Эти технологии помогают аграриям контролировать состояние полей и своевременно реагировать на изменения, что повышает урожайность и оптимизирует использование ресурсов. Данные о температуре, осадках и вегетационных индексах, собранные со спутников, интегрируются в цифровые карты и веб-сервисы.
👆🏼 Читайте выше о том, как космические технологии меняют сельское хозяйство.
#Грани_РАН
👆🏼 Читайте выше о том, как космические технологии меняют сельское хозяйство.
#Грани_РАН
Forwarded from SPUTNIX
Рейс контейнеровоза Flying Fish 1 по Северному морскому пути стал первым в истории для судов типа Panamax. Если простыми словами, это очень большие грузовые суда.
Контейнеровоз преодолел путь из Санкт-Петербурга в Шанхай всего за 21 день со средней скоростью 16 узлов или около 30 км/час. Значимым для всего мира это событие делает также и тот факт, что теперь задокументировано официально — маршрут через Суэцкий канал по времени занял бы на две недели больше.
Отметим, что до конца 2024 года группировка SITRO-AIS пополнится ещё несколькими десятками аппаратов, которые мы сейчас активно готовим к запуску
Please open Telegram to view this post
VIEW IN TELEGRAM
Унифицированная модель глубокого обучения для глобального прогнозирования надземной биомассы, высоты и покрытия полога по мультисенсорным спутниковым данным
В 📖 препринте, подготовленном сотрудниками американской компании Descartes Labs, представлена методика, использующая мультисенсорные мультиспектральные снимки с разрешением 10 метров и модель на основе глубокого обучения, которая позволяет прогнозировать плотность надземной биомассы (AGBD), высоту полога (CH), проективное покрытие (canopy cover, CC), а также оценивать неопределенность каждой из трёх величин.
В качестве входных данных модели используются отражательная способность Sentinel-2, коэффициент обратного рассеяния Sentinel-1 и ЦМР SRTM. Модель обучена на миллионах глобальных измерений GEDI-L2/L4.
Авторы проверили возможности модели, развернув её на всей территории земного шара в 2023 году, а также ежегодно с 2016 по 2023 год на отдельных территориях. Модель достигла средней абсолютной ошибки (MAE) для AGBD (CH, CC) в 26,1 млн/га (3,7 м, 9,9%) и среднеквадратичной ошибки в 50,6 млн/га (5,4 м, 15,8%) на глобальном тестовом наборе данных, демонстрируя значительное улучшение по сравнению с ранее опубликованными результатами.
🗺 Карта плотности надземной биомассы (AGBD) на 2023 год (источник).
#AGB #лес
В 📖 препринте, подготовленном сотрудниками американской компании Descartes Labs, представлена методика, использующая мультисенсорные мультиспектральные снимки с разрешением 10 метров и модель на основе глубокого обучения, которая позволяет прогнозировать плотность надземной биомассы (AGBD), высоту полога (CH), проективное покрытие (canopy cover, CC), а также оценивать неопределенность каждой из трёх величин.
В качестве входных данных модели используются отражательная способность Sentinel-2, коэффициент обратного рассеяния Sentinel-1 и ЦМР SRTM. Модель обучена на миллионах глобальных измерений GEDI-L2/L4.
Авторы проверили возможности модели, развернув её на всей территории земного шара в 2023 году, а также ежегодно с 2016 по 2023 год на отдельных территориях. Модель достигла средней абсолютной ошибки (MAE) для AGBD (CH, CC) в 26,1 млн/га (3,7 м, 9,9%) и среднеквадратичной ошибки в 50,6 млн/га (5,4 м, 15,8%) на глобальном тестовом наборе данных, демонстрируя значительное улучшение по сравнению с ранее опубликованными результатами.
🗺 Карта плотности надземной биомассы (AGBD) на 2023 год (источник).
#AGB #лес
Россия с 2025 по 2034 годы планирует запустить серию новых спутников наблюдения Земли [ссылка]
С 2025 по 2034 годы Россия планирует запустить серию гидрометеорологических спутников для дистанционного зондирования Земли, в том числе, арктического региона. Как сообщил на президиуме Российской академии наук директор Департамента научно-технических проектов госкорпорации "Роскосмос" Сергей Зайцев: "Сегодня у нас в стране мы пытаемся максимальное внимание уделять гидрометеорологическому направлению, поэтому у нас сформирована триада из космических систем. Это космические аппараты, размещенные на геостационарной орбите, высоко-эллиптические космические системы [наблюдения] за северными широтами, эта система уникальная в мире, и низкоорбитальный сегмент, представленный спутниками Метеор-М".
В частности, планируется в 2025 году запустить космический аппарат 🛰"Арктика-МП". Он служит для обеспечения гидрометеорологической информацией, в том числе прогнозом погоды, в региональном и в глобальном масштабах. Кроме того, спутник будет ретранслировать сигналы аварийных радиобуев КОСПАС-САРСАТ.
В 2026 году планируется запустить спутник высокодетального наблюдения "Ресурс-ПМ", в 2032 году планируется вывести на орбиту спутники "Ионосфера-М-ОП", "Метеор-МП" и "Стереоскоп".
Спутник 🛰"Ресурс-ПМ" будет осуществлять картографирование, мониторинг чрезвычайных ситуаций и получать данные для поиска углеводородных ресурсов.
🛰"Ионосфера-М-ОП" — космический аппарат нового поколения для исследования космической погоды (гелиогеофизической обстановки). Спутник будет наблюдать за Солнцем и солнечной активностью, мониторить состояние ионосферы и геомагнитную активность.
Космический аппарат 🛰"Метеор-МП" позволит получить гидрометеорологические данные в глобальном масштабе для составления прогноза погоды, контролировать опасные погодные явления и предупреждать об их приближении, контролировать радиационную и гелиогеофизическую обстановку.
Космический аппарат 🛰"Стереоскоп" представляет собой спутник нового поколения, предназначенный для обзорного наблюдения Земли (по-видимому, для стереосъемки — Спутник ДЗЗ).
В 2034 году на орбиту планируется вывести спутник 🛰"Океан" для анализа и прогноза состояния акваторий морей, океанов, ледяного покрова в Арктике, Антарктике, контроля за чрезвычайными ситуациями природного и техногенного характера, контроля состояния водной среды, мониторинга промысловых районов Мирового океана и информирования рыболовного флота.
Отвечая на вопрос о том, существуют ли в России аналоги системы "Старлинк" Зайцев отметил, что эта система "не столь оптимальна с точки зрения построения и стоимости ее создания". "Мы предлагали другую систему "Скиф" на высоких орбитах, в нее входило меньшее количество космических аппаратов, мы остаемся ее приверженцами".
#россия
С 2025 по 2034 годы Россия планирует запустить серию гидрометеорологических спутников для дистанционного зондирования Земли, в том числе, арктического региона. Как сообщил на президиуме Российской академии наук директор Департамента научно-технических проектов госкорпорации "Роскосмос" Сергей Зайцев: "Сегодня у нас в стране мы пытаемся максимальное внимание уделять гидрометеорологическому направлению, поэтому у нас сформирована триада из космических систем. Это космические аппараты, размещенные на геостационарной орбите, высоко-эллиптические космические системы [наблюдения] за северными широтами, эта система уникальная в мире, и низкоорбитальный сегмент, представленный спутниками Метеор-М".
В частности, планируется в 2025 году запустить космический аппарат 🛰"Арктика-МП". Он служит для обеспечения гидрометеорологической информацией, в том числе прогнозом погоды, в региональном и в глобальном масштабах. Кроме того, спутник будет ретранслировать сигналы аварийных радиобуев КОСПАС-САРСАТ.
В 2026 году планируется запустить спутник высокодетального наблюдения "Ресурс-ПМ", в 2032 году планируется вывести на орбиту спутники "Ионосфера-М-ОП", "Метеор-МП" и "Стереоскоп".
Спутник 🛰"Ресурс-ПМ" будет осуществлять картографирование, мониторинг чрезвычайных ситуаций и получать данные для поиска углеводородных ресурсов.
🛰"Ионосфера-М-ОП" — космический аппарат нового поколения для исследования космической погоды (гелиогеофизической обстановки). Спутник будет наблюдать за Солнцем и солнечной активностью, мониторить состояние ионосферы и геомагнитную активность.
Космический аппарат 🛰"Метеор-МП" позволит получить гидрометеорологические данные в глобальном масштабе для составления прогноза погоды, контролировать опасные погодные явления и предупреждать об их приближении, контролировать радиационную и гелиогеофизическую обстановку.
Космический аппарат 🛰"Стереоскоп" представляет собой спутник нового поколения, предназначенный для обзорного наблюдения Земли (по-видимому, для стереосъемки — Спутник ДЗЗ).
В 2034 году на орбиту планируется вывести спутник 🛰"Океан" для анализа и прогноза состояния акваторий морей, океанов, ледяного покрова в Арктике, Антарктике, контроля за чрезвычайными ситуациями природного и техногенного характера, контроля состояния водной среды, мониторинга промысловых районов Мирового океана и информирования рыболовного флота.
Отвечая на вопрос о том, существуют ли в России аналоги системы "Старлинк" Зайцев отметил, что эта система "не столь оптимальна с точки зрения построения и стоимости ее создания". "Мы предлагали другую систему "Скиф" на высоких орбитах, в нее входило меньшее количество космических аппаратов, мы остаемся ее приверженцами".
#россия
Forwarded from Институт физики атмосферы им. А.М. Обухова РАН (ИФА)
#ифа_статьи
В четвертом номере журнала «Известия РАН. Физика атмосферы и океана» за 2024 год опубликована статья В.А. Фролькиса, И.А. Евсикова и А.С. Гинзбурга «Моделирование антропогенного потока тепла в течение отопительного периода в крупных городах России».
🌆 В статье приведены оценки антропогенного потока тепла, создаваемого мегаполисами Российской Федерации в течение отопительного периода, полученные с помощью разработанной авторами двухмерной модели, учитывающей этажность и тип зданий для шестнадцати городов-миллионников России. Исходные данные получены из открытой веб-картографической платформы OpenStreetMap и сайта Яндекс Карты. Для четырех крупнейших мегаполисов России: Москвы, Санкт-Петербурга, Новосибирска и Екатеринбурга - приведены карты пространственного распределения плотности антропогенного потока тепла.
Статья продолжает серию опубликованных за последние почти полтора десятилетия статей сотрудников Лаборатории математической экологии ИФА им. А.М. Обухова РАН и соавторов из Москвы и Санкт-Петербурга, посвященных влиянию антропогенных потоков тепла на климат городских агломераций России и других регионов мира:
➖ Антропогенные потоки тепла в городских агломерациях
➖ Антропогенные потоки тепла в столичных агломерациях России и Китая
➖ Влияние климатических факторов на энергопотребление в отопительный сезон
➖ Влияние урбанизации и потепления климата на энергопотребление больших городов
➖ Обратные связи температурного режима и энергопотребления урбанизированных территорий
➖ Влияние обратных связей в системе «климат-энергетика» на интенсивность городского острова тепла
➖ Антропогенные мезометеорологические обратные связи: обзор современных исследований
➖ Влияние теплового загрязнения атмосферы на климат города (оценки с помощью модели COSMO-CLM)
➖ Зависимость антропогенного потока тепла от температуры воздуха (на примере Санкт-Петербурга)
К настоящему времени статья опубликована на английском языке. До конца года все номера ФАО 2024 должны быть опубликованы в издательстве «Наука» на русском языке.
В четвертом номере журнала «Известия РАН. Физика атмосферы и океана» за 2024 год опубликована статья В.А. Фролькиса, И.А. Евсикова и А.С. Гинзбурга «Моделирование антропогенного потока тепла в течение отопительного периода в крупных городах России».
🌆 В статье приведены оценки антропогенного потока тепла, создаваемого мегаполисами Российской Федерации в течение отопительного периода, полученные с помощью разработанной авторами двухмерной модели, учитывающей этажность и тип зданий для шестнадцати городов-миллионников России. Исходные данные получены из открытой веб-картографической платформы OpenStreetMap и сайта Яндекс Карты. Для четырех крупнейших мегаполисов России: Москвы, Санкт-Петербурга, Новосибирска и Екатеринбурга - приведены карты пространственного распределения плотности антропогенного потока тепла.
Статья продолжает серию опубликованных за последние почти полтора десятилетия статей сотрудников Лаборатории математической экологии ИФА им. А.М. Обухова РАН и соавторов из Москвы и Санкт-Петербурга, посвященных влиянию антропогенных потоков тепла на климат городских агломераций России и других регионов мира:
К настоящему времени статья опубликована на английском языке. До конца года все номера ФАО 2024 должны быть опубликованы в издательстве «Наука» на русском языке.
Please open Telegram to view this post
VIEW IN TELEGRAM
SpringerLink
Modeling Anthropogenic Heat Flux during the Heating Season in Large Cities of the Russian Federation
Izvestiya, Atmospheric and Oceanic Physics - Estimates of the anthropogenic heat flux (AHF) created by megacities of the Russian Federation during the heating season have been obtained. To...