Спутник ДЗЗ
3.24K subscribers
2.52K photos
141 videos
191 files
2.26K links
Человеческим языком о дистанционном зондировании Земли.

Обратная связь: @sputnikDZZ_bot
Download Telegram
Новый снимок МКС, сделанный спутником Maxar

Спутник Worldview-3 компании Maxar 7 июня 2024 года сделал снимок Международной космической станции (МКС) с пристыкованным к ней космическим кораблём Boeing Starliner.

Это далеко не первый снимок внеземных объектов, сделанный спутниками Maxar. Вот снимок МКС от сентября 2022 года, а вот снимок космического аппарата NASA Landsat 8. Все они сделаны аппаратурой спутника WorldView-3.

В 2021 году Maxar Intelligence стала первой компанией, получившей лицензию NOAA на проведение внеземной съемки (non-Earth imaging, NEI) как для государственных, так и для коммерческих целей. Спутники Maxar могут собирать и распространять изображения космических объектов на низкой околоземной, средней околоземной и геостационарной орбитах. Лицензия распространяется на действующие спутники Maxar, а также на ещё не запущенную часть группировки WorldView Legion.

Группировка Maxar Intelligence способна получать изображения объектов на низкой околоземной орбите с разрешением менее 15,24 см (6 дюймов), а также поддерживать слежение за объектами на других околоземных орбитах.

#SSA #maxar
SatTrackCam Leiden (b)log

📡 SatTrackCam Leiden (Cospar 4353) — это станция слежения за спутниками, расположенная в Лейдене (Нидерланды). Основное внимание уделяется засекреченным объектам, то есть 🛰“спутникам-шпионам. С помощью камеры проводятся точные позиционные измерения интересующих спутников с целью определения их орбит. Анализируется поведение орбиты. Кроvе того, в блоге анализируются 🚀ракетные испытания.

#наблюдение
NGA требуются спутниковые снимки космических аппаратов на орбите [ссылка]

Национальное агентство геопространственной разведки (NGA) обратилось к поставщикам коммерческих спутниковых снимков за помощью в мониторинге объектов на орбите Земли. 12 июня агентство опубликовало запрос на информацию, обращенный к компаниям, работающим на рынке внеземной съемки (non-Earth imaging, NEI).

NGA заявило, что планирует провести исследование рынка и начать диалог с промышленностью о предоставлении коммерческих данных и аналитики NEI для удовлетворения потребностей правительства США и союзников в разведданных об объектах в космосе.

Вчерашний снимок Maxar — попытка показать товар лицом. Кстати, снимок сделан с расстояния 276 км.

#США #SSA
Как-то кучно SSA пошло)
Aerospacelab создаст спутник для компании, отслеживающей космический мусор [ссылка]

Немецкий стартап Vyoma выбрал бельгийскую компанию Aerospacelab для создания третьего малого спутника своей группировки по мониторингу космического мусора.

Шестидесятикилограммовый космический аппарат должен быть готов к запуску на низкую околоземную орбиту к концу 2025 года. Спутник будет отслеживать космический мусор на низкой околоземной и геостационарной орбитах.

В конце этого года планируется запуск первого из двух малых спутников, заказанных Vyoma у болгарской компании EnduroSat, специализирующейся на CubeSat’ах.

Часть группировки из 12 спутников, получившей название Flamingo, будет использовать оптические датчики для пассивного отслеживания и каталогизации мусора, включая объекты на низкой околоземной орбите размером более 10 сантиметров.

Эти наблюдения будут дополнять данные космической ситуационной осведомлённости, которые Vyoma предоставляет европейским военным клиентам из сторонних сетей наземных датчиков, наблюдающих объекты на низкой околоземной орбите размером до 6 сантиметров (при условии ясной атмосферы).

Vyoma планирует обеспечить отслеживание на низкой околоземной орбите объектов размером до 1 сантиметра, которые в настоящее время не каталогизируются.

📸 Художественное изображение космического аппарата, создаваемого Aerospacelab для Vyoma

#SSA #debris #болгария #бельгия #германия
Мадагаскарская "медуза" [ссылка]

Расположенный в Индийском океане у восточного побережья Африки и занимающий площадь почти 600 000 кв. км, Мадагаскар является четвертым по величине островом в мире. Залив Махаджамба, который мы видим в центре снимка, находится на северо-западе Мадагаскара в месте слияния двух крупных рек: Махаджамба, впадающей с юга, и Софии, текущей с северо-востока. Обе реки впадают в Мозамбикский канал, который отделяет Мадагаскар от Африканского континента.

Во время сильных дождей ярко-красные почвы на западе Мадагаскара смываются с холмов в ручьи и реки, окрашивая их воды в красноватый цвет. В результате, залив Махаджамба из космоса становится похож на медузу, протянувшую свои “щупальца” в Мозамбикский канал. Однако воды залива далеко не всегда имеют такой оттенок — сочетание приливов и отсутствия существенных осадков может быстро очистить воду.

#снимки
Forwarded from «Советский космос» (Alena Schedrina)
В этот день, в 1928 году, родился Эрнесто Рафаэль Гевара де ла Серна, — латиноамериканский революционер, команданте Кубинской революции 1959 года и кубинский государственный деятель.

На фото: Юрий Гагарин и Эрнесто Че Гевара в Москве, 1964 г.

@KOCMOC_CCCP
Новая технология обнаружения лесных пожаров из космоса

Австралийские учёные предложили новую технологию оперативного обнаружения лесных пожаров по данным наблюдений из космоса. Технология нацелена на выявление источников дыма, которые можно увидеть прежде, чем огонь разгорится и станет достаточно большим.

Для наблюдений используется гиперспектромер, данные которого обрабатываются непосредственно на борту спутника. Дым отделяется от облаков на снимках при помощи модели искусственного интеллекта. После этого информация об источниках дыма, гораздо более компактная чем исходные гиперспектральные данные, передаётся на землю.

Технология будет реализована в предстоящей австралийской миссии Kanyini, запуск которой планируется в этом году.

Малый КА SASAT1 для миссии Kanyini построен на платформе Apogee Bus (CubeSat 6U) от австралийской компании Inovor Technologies. Характеристики гиперспектрометра HyperScout 2 можно посмотреть здесь.

Таким образом, сочетание гиперспектральных данных, их обработки на борту спутника, а также обнаружения источников дыма методами ИИ, позволило реализовать технологию обнаружения пожаров на миниатюрном КА, размещённом на низкой околоземной орбите. Если добавить к этому возможность сбрасывать данные на землю с минимальной задержкой, то получится потягаться с геостационарными аппаратами — нынешними лидерами в части оперативности предоставления данных об очагах возгораний.

📸 Художественное изображение космического аппарата миссии Kanyini

#гиперспектр #пожары #австралия
This media is not supported in your browser
VIEW IN TELEGRAM
Глобальные данные о методах обработки почв в растениеводстве

Метод обработки почвы no-till (NT) часто представляют как средство выращивания культур с положительными экологическими эффектами, такими как увеличение секвестрации углерода, улучшение качества почвы, снижение эрозии почвы и увеличение биоразнообразия. Однако вопрос о возможных преимуществах NT по сравнению с традиционной обработкой почвы (conventional tillage, CT), является дискуссионным и характеризуется высокой вариативностью результатов наблюдений во времени и пространстве.

Чтобы сравнить результаты обоих методов был создан набор данных Global crop production tillage practices. В нём содержатся сведения об урожайности культур, полученной при использовании CT и NT, а также информация о вегетационном периоде, методах управления, характеристиках почвы и ключевых климатических параметрах в течение экспериментального года.

Набор данных содержит 4403 парных наблюдений за урожайностью в период с 1980 по 2017 год для восьми основных сельскохозяйственных культур в 50 странах. Он поможет получить представление об основных факторах, объясняющих изменчивость продуктивности NT и влияние внедрения этого метода на урожайность.

📖 Su, Y., Gabrielle, B., & Makowski, D. (2021). A global dataset for crop production under conventional tillage and no tillage systems. Scientific Data, 8(1). https://doi.org/10.1038/s41597-021-00817-x

🛢 figshare

🗺 Google Earth Engine

#сельхоз #данные #GEE
Media is too big
VIEW IN TELEGRAM
Регистрация на ЛКШ-2024 открыта!

Друзья, вы этого ждали, писали на почту и в личные сообщения, спрашивали вживую на мероприятиях, и вот этот день настал — вы можете прямо сейчас зарегистрироваться на Летнюю Космическую Школу — 2024!

Она пройдёт с 27 июля по 4 августа в Институте Космических Исследований РАН. В этом году мы подготовили для вас новые секции, переделали формат симуляции космического полёта и пригласили новых лекторов.

Секции ЛКШ-2024:

✓Баллистика и орбитальная механика
✓Спутникостроение и космическая связь
✓Дистанционное зондирование
✓Научная журналистика
✓Космическая медицина и биология
✓Планетные исследования
✓Гелиофизика и межпланетная среда
✓Ракетно-космическая техника

Выбирайте то, что вам ближе и оставляйте заявку: https://space-school.org/letnyaya-kosmicheskaya-shkola-2024/registratciya. Увидимся на Школе ❤️🚀

Прикрепили сюжет об ЛКШ-2023, чтобы напомнить вам, как круто на 9 дней погрузиться в изучение космоса.

Музыка: Иван Розанов
Видео/монтаж: Иван Тимошенко
Картографирование наводнений с помощью радаров: обзор методов и наборов данных

📖 Amitrano, D., Di Martino, G., Di Simone, A., & Imperatore, P. (2024). Flood Detection with SAR: A Review of Techniques and Datasets. Remote Sensing, 16(4), 656. https://doi.org/10.3390/rs16040656

Дистанционное зондирование Земли из космоса при помощи радаров оказывает большую помощь в борьбе с наводнениями и смягчении их последствий. В отличие от оптических датчиков, радары позволяют получать данные в условиях облачности, что обеспечивает регулярный мониторинг зон затопления.

Для картографирования и мониторинга наводнений применяется широкий спектр подходов: пороговые методы, нечёткая логика, машинное обучение, слияние данных (data fusion) и др. Оценить точность и эффективность различных методов картографирования наводнений позволяют справочные наборы данных. Приведен обзор открытых наборов радарных данных, которые охватывают события, связанные с наводнениями.

Мониторинг наводнений при помощи радаров испытывает трудности в районах городской застройки и густой растительности, где сложные механизмы рассеяния могут помешать точному выделению зон затопления. Эти и другие проблемы, а также перспективы развития методов картографирования наводнений на основе радарных данных обсуждаются в данной работе.

Обзор методов картографирования поверхностных водоёмов и зон затопления с помощью мультиспектральных оптических спутниковых сенсоров приведен здесь.

📊 Архитектура нейронной сети Siam-DWENet, предназначенной для извлечения высокоуровневых характеристик водных объектов из радарных снимков, сделанных до и после наводнения.

#обзор #SAR #наводнение #вода
Интерактивная карта особо охраняемых природных территорий Беларуси

На сайте Министерства природных ресурсов и охраны окружающей среды Беларуси появилась интерактивная карта особо охраняемых природных территорий Республики Беларусь.

Карта содержит фото- и видеоматериалы, а также описательную информацию о местах обитания исчезающих видов флоры и фауны, редких формах рельефа, родниках, живописных старинных парках, озерах, вековых деревьях и насаждениях, древних валунах и многом другом. Для каждого природного объекта на карте указаны координаты GPS. Используя функцию калькулятора расстояний и составления маршрута, туристы смогут самостоятельно организовать поездку с учётом своих предпочтений и возможностей.

Первый месяц карта будет работать в тестовом режиме: координаты, фотографии и другая информация, возможно, будут скорректированы. В перспективе карта будет мобильной и её можно будет редактировать.

Источник

#РБ
Госкорпорация “Роскосмос” приняла в эксплуатацию космическую систему высокодетальной съёмки “Ресурс-П” №4

Ежедневно спутник “Ресурс-П” №4 производит съёмку объектов, которые относятся к важным событиям в жизни страны и мира. Сегодня на снимках, сделанных аппаратурой “Геотон,” представлены 1️⃣ шанхайский “Disneyland”, открывшийся 16 июня 2016 года (Китай) и 2️⃣ Сургутская ГРЭС-2 — крупнейшая тепловая электростанция России (ХМАО — Югра, Россия).

#россия
Компания Albedo планирует запустить свой первый спутник на сверхнизкую околоземную орбиту в феврале будущего года [ссылка]

Спутник, получивший название Clarity-1, будет запущен миссией SpaceX Transporter-13. Сверхнизкая околоземная орбита, то есть орбита высотой менее 400 километров, позволит осуществлять оптическую съёмку поверхности планеты с пространственным разрешением 10 см.

Клиенты уже зарезервировали большую часть съёмочных мощностей Clarity на первые два года его работы. Кроме того, компания зарезервировала мощности для выполнения контрактов с американским правительством.

В декабре прошлого года Национальное разведывательное управление США (NRO) объявило о заключении соглашений с Albedo и четырьмя другими поставщиками оптических снимков. В прошлом году Albedo также выиграла контракт на поставку Национальному центру воздушной и космической разведки (National Air and Space Intelligence Center) тепловых инфракрасных снимков, сделанных в ночное время.

Среди первых коммерческих клиентов Albedo названы: компания-разработчик программного обеспечения AiDash, Japan Space Imaging, немецкий оператор газотранспортных сетей Open Grid Europe, канадский поставщик геопространственных данных PhotoSat, компания ScaleAI, предоставляющая данные для обучения, и поставщик данных наблюдения Земли SkyFi. На дополнительные снимки претендует неназванный хедж-фонд.

Albedo делится существующими резервами съёмочных задач для коммерческих клиентов на онлайн-карте. Наиболее востребованы континентальная часть США и Европа. Некоторые регионы, в их числе Россия и Китай, являются приоритетными для американского правительства, так что резервы для коммерческой съёмки в них отсутствуют.

Первоначальные планы Albedo предусматривали создание группировки из 24 спутников. Однако, в конечном счёте, количество спутников определит спрос на данные. "Когда мы доберемся до шести-двенадцати спутников и определим пути развития, мы определим, выделять ли нам больше средств на запуск большего количества спутников", — заявил исполнительный директор и совладелец Albedo Тофер Хаддад (Topher Haddad).

"Самое сложное в том, что мы делаем, — это проблема наведения", — сказал Хаддад. "Сделать снимки множества различных целей за один проход по орбите и избавиться от импульса и крутящего момента, создаваемого атмосферой, уже довольно сложно для спутника с высоким разрешением изображения. Это становится еще сложнее, когда спутник летит очень низко".

Состав наблюдательного совета Albedo ответит на вопрос о приоритетных клиентах компании.

📸 Полноразмерный макет космического аппарата Clarity-1

#США #VLEO
Заседание Всероссийского семинара “Проблемы дистанционного зондирования Земли из космоса”

Очередное заседание Всероссийского семинара “Проблемы дистанционного зондирования Земли из космоса” состоится в четверг 20 июня 2024 в 11:00 по московскому времени. Тема семинара:

Совместный подспутниковый эксперимент ААНИИ и ИКИ РАН по комплексным наблюдениям морского ледяного покрова Арктики в мае-июне 2024 года (задачи и первые результаты).

Докладчик:
Ермаков Дмитрий Михайлович, д.ф.-м.н., зав. отделом “Исследования Земли из космоса” ИКИ РАН, в.н.с. ФИРЭ им. В.А. Котельникова РАН.
Соавторы: Алексеева Т.А. (ААНИИ, ИКИ РАН), Афанасьева Е.В. (ААНИИ, ИКИ РАН), Кузьмин А.В. (ИКИ РАН), Сероветников С.С. (ААНИИ), Тихонов В.В. (ИКИ РАН, ИВЭП СО РАН)

Доклад продолжает краткую тематическую серию заседаний семинара по проблемам дистанционного мониторинга Арктики.

В мае-июне 2024 года сотрудниками ААНИИ и ИКИ РАН был проведен совместный подспутниковый эксперимент по комплексным наблюдениям морского ледяного покрова Арктики в натурных условиях. Основной задачей исследовательской группы ИКИ РАН было получение рядов данных СВЧ-радиометрических измерений Арктического ледяного покрова, воспроизводящих в основных чертах (набор частот, геометрия съемки) измерения спутниковыми приборами SSMIS, AMSR-2 и, впервые в практике дистанционного зондирования, МТВЗА-ГЯ. Натурные измерения открывают широкие перспективы для уточнения излучательных и отражательных свойств различных типов ледяного и снежного покровов в СВЧ диапазоне, проверки и коррекции ряда широко используемых алгоритмов восстановления параметров ледяного и снежного покровов Арктических морей и эстуариев крупных северных рек.

В докладе будут описаны некоторые особенности организации и проведения эксперимента, даны предварительные оценки полученных результатов, обсуждены перспективы дальнейших экспериментальных исследований в этом направлении.

💡 Подробная информация о докладе и трансляции размещена на странице семинара.

📹 Записи семинаров

#конференции
Пакет mlhrsm для картографирования влажности почвы с высоким пространственным разрешением

Влажность почвы — одна из ключевых переменных в сельском хозяйстве и в экологии. С определением влажности почвы в масштабе поля по данным дистанционного зондирования из космоса существуют большие проблемы: исходные данные имеют низкое пространственное разрешение, а результатам машинного обучения недостаёт точности.

В работе

📖 Peng, Y., Yang, Z., Zhang, Z., & Huang, J. (2024). A Machine Learning-Based High-Resolution Soil Moisture Mapping and Spatial–Temporal Analysis: The mlhrsm Package. Agronomy, 14(3), 421. https://doi.org/10.3390/agronomy14030421

предлагается очередная модель машинного обучения для картографирования влажности почвы. Она основана на алгоритме квантильного случайного леса (quantile random forest) и использует данные наземных датчиков влажности, параметры поверхности земли (растительность, рельеф и почву), а также оценки влажности почвы на поверхности и в прикорневой зоне, полученные по спутниковым данным. В работе используются данные спутников SMAP, Sentinel-1, Landsat, а также данные приборов MODIS. Область исследования: CONUS (contiguous USA), где существуют открытые данные наземных датчиков влажности почвы.

Модель позволяет создавать карты влажности почвы высокого разрешения (от 30 до 500 м, от ежедневных до ежемесячных) и строить оценки неопределенности на участках по территории CONUS на уровнях 0–5 см и 0–1 м.

Точность результатов — примерно такая же, как и у других работ подобного рода. Примеры оценок можно посмотреть в статье.

Привлекает в работе то, что весь расчёт оформлен в виде пакета mlhrsm на языке R с открытым исходным кодом. По сути, статья — это руководство пользователя mlhrsm, где показан расчёт влажности почвы на примере одного поля. Её можно использовать для анализа сильных и слабых сторон подобных моделей, а также как основу для создания собственных моделей.

#почва #сельхоз #R
1️⃣ Блок-схема использования функций пакета mlhrsm.

2️⃣ Карта объёмной влажности почвы тестового поля на 1 августа 2020 года (глубина: 0–5 см, пространственное разрешение: 30 м).

Источник
📨 Российская академия наук запускает телеграм-бот для приёма научных новостей

Делитесь своими новостями из мира российской науки — интересными открытиями, предстоящими конференциями, новыми проектами и другими информационными поводами через телеграм-бот @PressRAN_bot.

📰 Для этого введите тему новости, опишите инфоповод, прикрепите релиз, ссылку на фото- и видеоматериалы и контактный номер телефона.

🤳 Пресс-служба оперативно свяжется с вами для уточнения деталей, и ваш релиз может появиться на информационных ресурсах Российской академии наук.