Forwarded from LLM Engineers
یه بحثی که همیشه داغه، این همه عنوان شغلی تو حوزه AI از کجا میاد و فرقشون چیه. خیلی از این عناوین یا توسط HRها ساخته شدن یا صرفاً برای هایپ و جذب نیرو هستن. واقعیت اینه که مرز بین این نقشها خیلی باریکه و تو شرکتهای مختلف، شرح وظایف یه AI Engineer میتونه زمین تا آسمون فرق کنه. اینجا سعی میکنم یه دستهبندی منطقی و به دور از هایپ از این نقشها بدم.
هستهی فنی و مهندسی (The Core Engineers)
اینجا با نقشهایی طرفیم که بیس کار AI رو تشکیل میدن و بیشترین همپوشانی رو دارن.
ML Engineer:
میشه گفت این اصلیترین و جاافتادهترین عنوانه. کارش ساخت، آموزش و دیپلوی مدلهای machine learning هست. از ساخت data pipeline گرفته تا training و مانیتورینگ مدل تو پروداکشن، همه با این شخصه. ابزارهاش هم Python، فریمورکهایی مثل PyTorch و TensorFlow و ابزارهای MLOps هست.
AI Engineer:
این عنوان یه کم کلیتر از ML Engineer هست. یه AI Engineer ممکنه روی سیستمهای AI که لزوماً learning-based نیستن هم کار کنه (مثلاً سیستمهای rule-based یا optimization). اما در عمل، ۹۰ درصد مواقع شرکتها از این عنوان به جای ML Engineer استفاده میکنن و فرق خاصی بینشون نیست.
Deep Learning Engineer:
این یه تخصص از ML Engineer به حساب میاد. تمرکزش فقط روی شبکههای عصبی عمیق و معماریهای پیچیدهست. این افراد معمولاً روی مسائل Computer Vision یا NLP کار میکنن که مدلهای ساده جواب نمیدن. باید درک عمیقی از GPU، بهینهسازی و ریاضیات پشت این مدلها داشته باشه.
بچههای پروداکت و نرمافزار (The Application Layer)
این گروه کارشون اینه که AI رو از فاز تئوری و مدل، بیارن تو دل یه محصول واقعی.
Applied AI Engineer:
این عنوان یعنی «بیا این مدل رو بردار و یه مشکل واقعی تو بیزینس رو باهاش حل کن». تفاوتش با ML Engineer اینه که تمرکزش روی کاربرد و بیزینسه، نه لزوماً ساخت بهترین مدل. باید دانش دامنه (مثلاً مالی یا پزشکی) داشته باشه و بتونه سریع prototype بسازه.
AI Software Engineer:
این یه مهندس نرمافزاره که AI هم بلده. کار اصلیش software engineering هست ولی میتونه مدلهای آماده رو تو یه اپلیکیشن بزرگتر ادغام کنه. کدنویسی تمیز، معماری نرمافزار و کار با APIها براش مهمتر از خودِ الگوریتمهاست.
موج جدید: متخصصهای GenAI و LLM
اینا نقشهایی هستن که با ظهور Generative AI و LLMها به وجود اومدن و هنوز خیلیهاشون به بلوغ نرسیدن.
LLM Engineer:
کار این شخص تماماً حول Large Language Models میگرده. از fine-tuning کردن مدلها با تکنیکهای PEFT مثل LoRA گرفته تا بهینهسازی inference و کار با ابزارهای مرتبط. این نقش الان خیلی رو بورسه.
AI Agent Developer:
این نقش روی ساخت ایجنتهای هوشمند و خودمختار تمرکز داره که میتونن با استفاده از LLM و ابزارهای دیگه، وظایف چندمرحلهای رو انجام بدن. کار با فریمورکهایی مثل LangChain یا ساخت سیستمهای planning و reasoning جزو کارشونه.
زیرساخت و عملیات (The Infrastructure & Ops)
اینا کسایی هستن که چرخدندههای سیستمهای AI رو روغنکاری میکنن تا همه چیز روان کار کنه.
MLOps Engineer:
این شخص مسئول اتوماسیون و مدیریت چرخه حیات مدلهای ML هست. کارش ساخت CI/CD pipeline برای مدلها، مانیتورینگ، ورژنبندی و تضمین scalability اونهاست. با ابزارهایی مثل Kubernetes، Kubeflow و Prometheus سر و کار داره. مدل نمیسازه، ولی کمک میکنه مدلها به درستی دیپلوی بشن و زنده بمونن.
LLMOps Engineer:
این همون MLOps هست ولی برای دنیای LLMها. چالشهای LLMها مثل هزینههای سرسامآور inference، مدیریت پرامپتها و مانیتورینگ hallucination باعث شده این تخصص جدید به وجود بیاد.
استراتژیستها و محققها (The Big Picture & Research)
این گروه یا در لبهی دانش حرکت میکنن یا تصویر بزرگ سیستم رو طراحی میکنن.
AI Researcher / Research Scientist:
کارش تحقیق و توسعهی الگوریتمها و روشهای جدیده. این افراد معمولاً درگیر انتشار مقاله و کارهای آکادمیک هستن و کمتر با پروداکشن درگیرن. معمولاً مدرک دکترا دارن و ریاضیشون خیلی قویه.
Data Scientist:
این نقش بیشتر به تحلیل داده و کشف insight مرتبطه تا مهندسی. از ML استفاده میکنه تا الگوها رو پیدا کنه و به سوالات بیزینس جواب بده. خروجیش معمولاً گزارش، داشبورد و مدلهای پیشبینیکنندهست، نه یه سیستم نرمافزاری production-grade.
در نهایت، این عناوین فقط برچسب هستن. مهم اینه که شما روی مهارتهای اصلی مثل برنامهنویسی، درک عمیق الگوریتمها و مهندسی نرمافزار تمرکز کنید. این مهارتها همیشه ارزشمندن، حتی اگه فردا عنوان شغلی جدیدی مد بشه.
🛠 Join @LLMEngineers Community
هستهی فنی و مهندسی (The Core Engineers)
اینجا با نقشهایی طرفیم که بیس کار AI رو تشکیل میدن و بیشترین همپوشانی رو دارن.
ML Engineer:
میشه گفت این اصلیترین و جاافتادهترین عنوانه. کارش ساخت، آموزش و دیپلوی مدلهای machine learning هست. از ساخت data pipeline گرفته تا training و مانیتورینگ مدل تو پروداکشن، همه با این شخصه. ابزارهاش هم Python، فریمورکهایی مثل PyTorch و TensorFlow و ابزارهای MLOps هست.
AI Engineer:
این عنوان یه کم کلیتر از ML Engineer هست. یه AI Engineer ممکنه روی سیستمهای AI که لزوماً learning-based نیستن هم کار کنه (مثلاً سیستمهای rule-based یا optimization). اما در عمل، ۹۰ درصد مواقع شرکتها از این عنوان به جای ML Engineer استفاده میکنن و فرق خاصی بینشون نیست.
Deep Learning Engineer:
این یه تخصص از ML Engineer به حساب میاد. تمرکزش فقط روی شبکههای عصبی عمیق و معماریهای پیچیدهست. این افراد معمولاً روی مسائل Computer Vision یا NLP کار میکنن که مدلهای ساده جواب نمیدن. باید درک عمیقی از GPU، بهینهسازی و ریاضیات پشت این مدلها داشته باشه.
بچههای پروداکت و نرمافزار (The Application Layer)
این گروه کارشون اینه که AI رو از فاز تئوری و مدل، بیارن تو دل یه محصول واقعی.
Applied AI Engineer:
این عنوان یعنی «بیا این مدل رو بردار و یه مشکل واقعی تو بیزینس رو باهاش حل کن». تفاوتش با ML Engineer اینه که تمرکزش روی کاربرد و بیزینسه، نه لزوماً ساخت بهترین مدل. باید دانش دامنه (مثلاً مالی یا پزشکی) داشته باشه و بتونه سریع prototype بسازه.
AI Software Engineer:
این یه مهندس نرمافزاره که AI هم بلده. کار اصلیش software engineering هست ولی میتونه مدلهای آماده رو تو یه اپلیکیشن بزرگتر ادغام کنه. کدنویسی تمیز، معماری نرمافزار و کار با APIها براش مهمتر از خودِ الگوریتمهاست.
موج جدید: متخصصهای GenAI و LLM
اینا نقشهایی هستن که با ظهور Generative AI و LLMها به وجود اومدن و هنوز خیلیهاشون به بلوغ نرسیدن.
LLM Engineer:
کار این شخص تماماً حول Large Language Models میگرده. از fine-tuning کردن مدلها با تکنیکهای PEFT مثل LoRA گرفته تا بهینهسازی inference و کار با ابزارهای مرتبط. این نقش الان خیلی رو بورسه.
AI Agent Developer:
این نقش روی ساخت ایجنتهای هوشمند و خودمختار تمرکز داره که میتونن با استفاده از LLM و ابزارهای دیگه، وظایف چندمرحلهای رو انجام بدن. کار با فریمورکهایی مثل LangChain یا ساخت سیستمهای planning و reasoning جزو کارشونه.
زیرساخت و عملیات (The Infrastructure & Ops)
اینا کسایی هستن که چرخدندههای سیستمهای AI رو روغنکاری میکنن تا همه چیز روان کار کنه.
MLOps Engineer:
این شخص مسئول اتوماسیون و مدیریت چرخه حیات مدلهای ML هست. کارش ساخت CI/CD pipeline برای مدلها، مانیتورینگ، ورژنبندی و تضمین scalability اونهاست. با ابزارهایی مثل Kubernetes، Kubeflow و Prometheus سر و کار داره. مدل نمیسازه، ولی کمک میکنه مدلها به درستی دیپلوی بشن و زنده بمونن.
LLMOps Engineer:
این همون MLOps هست ولی برای دنیای LLMها. چالشهای LLMها مثل هزینههای سرسامآور inference، مدیریت پرامپتها و مانیتورینگ hallucination باعث شده این تخصص جدید به وجود بیاد.
استراتژیستها و محققها (The Big Picture & Research)
این گروه یا در لبهی دانش حرکت میکنن یا تصویر بزرگ سیستم رو طراحی میکنن.
AI Researcher / Research Scientist:
کارش تحقیق و توسعهی الگوریتمها و روشهای جدیده. این افراد معمولاً درگیر انتشار مقاله و کارهای آکادمیک هستن و کمتر با پروداکشن درگیرن. معمولاً مدرک دکترا دارن و ریاضیشون خیلی قویه.
Data Scientist:
این نقش بیشتر به تحلیل داده و کشف insight مرتبطه تا مهندسی. از ML استفاده میکنه تا الگوها رو پیدا کنه و به سوالات بیزینس جواب بده. خروجیش معمولاً گزارش، داشبورد و مدلهای پیشبینیکنندهست، نه یه سیستم نرمافزاری production-grade.
در نهایت، این عناوین فقط برچسب هستن. مهم اینه که شما روی مهارتهای اصلی مثل برنامهنویسی، درک عمیق الگوریتمها و مهندسی نرمافزار تمرکز کنید. این مهارتها همیشه ارزشمندن، حتی اگه فردا عنوان شغلی جدیدی مد بشه.
🛠 Join @LLMEngineers Community
👌1