🚀 در ByteDance Seed تکنیک جدیدی برای آموزش LLM معرفی شد: Knapsack RL
🔍 مشکل در RL کلاسیک:
در کارهای ساده همیشه موفقیت → بدون گرادیان
در کارهای سخت همیشه شکست → باز هم بدون گرادیان
💡 راهکار:
به جای توزیع یکنواخت rolloutها، بودجه محاسباتی مثل یک مسئله کولهپشتی (Knapsack) روی مواردی صرف میشود که واقعاً سیگنال آموزشی میدهند.
✨ نتایج:
🔼 +20–40% گرادیانهای غیرصفر بیشتر
🧮 تا 93 rollout برای مسائل سخت (بدون هزینه اضافه)
📈 +2–4 امتیاز میانگین، تا +9 در ریاضیات
💰 حدوداً دو برابر ارزانتر از روش توزیع یکنواخت
📄 جزییات بیشتر:
huggingface.co/papers/2509.25849
@rss_ai_ir 🤖
#هوش_مصنوعی #یادگیری_تقویتی #LLM #KnapsackRL #ByteDance #ماشین_لرنینگ #یادگیری_عمیق #AI #RLHF #MachineLearning
🔍 مشکل در RL کلاسیک:
در کارهای ساده همیشه موفقیت → بدون گرادیان
در کارهای سخت همیشه شکست → باز هم بدون گرادیان
💡 راهکار:
به جای توزیع یکنواخت rolloutها، بودجه محاسباتی مثل یک مسئله کولهپشتی (Knapsack) روی مواردی صرف میشود که واقعاً سیگنال آموزشی میدهند.
✨ نتایج:
🔼 +20–40% گرادیانهای غیرصفر بیشتر
🧮 تا 93 rollout برای مسائل سخت (بدون هزینه اضافه)
📈 +2–4 امتیاز میانگین، تا +9 در ریاضیات
💰 حدوداً دو برابر ارزانتر از روش توزیع یکنواخت
📄 جزییات بیشتر:
huggingface.co/papers/2509.25849
@rss_ai_ir 🤖
#هوش_مصنوعی #یادگیری_تقویتی #LLM #KnapsackRL #ByteDance #ماشین_لرنینگ #یادگیری_عمیق #AI #RLHF #MachineLearning
🎓 استنفورد مجموعهای جدید از درسهای رایگان هوش مصنوعی با تدریس اندرو اِنجی منتشر کرد
⛔️دانشگاه Stanford مجموعهای تازه از درسهای آزاد (Open Lectures) در زمینه هوش مصنوعی و یادگیری ماشین را با تدریس مستقیم Andrew Ng — بنیانگذار Coursera و از پیشگامان آموزش مدرن هوش مصنوعی — منتشر کرده است. 🤖📚
---
🧠 محتوای دوره:
✳️آموزش شبکههای عصبی و اصول آموزش مدلهای AI
✳️طراحی و ساخت عاملهای هوشمند (AI Agents)
✳️نکات حرفهای برای پیشرفت شغلی در حوزه هوش مصنوعی
✳️تمرینهای عملی با فریمورکهای مدرن AI (مثل PyTorch و TensorFlow)
✳️مناسب برای مبتدیان تا متخصصان حرفهای
---
💡 این دوره بخشی از برنامه جهانی دانشگاه استنفورد برای دسترسی همگانی به آموزشهای AI است و بهصورت کاملاً رایگان منتشر میشود.
📘 لینک دوره:
Stanford AI Lectures – Andrew Ng
https://www.youtube.com/watch?v=_NLHFoVNlbg
👨🏫 اندرو اِنجی همچنان همان کاری را انجام میدهد که مدلهای هوش مصنوعی از آن ناتواناند:
آموزش انسانها برای تفکر مانند ماشینها. 💬
#AI #MachineLearning #Stanford #AndrewNg #Education #Coursera #DeepLearning @rss_ai_ir
⛔️دانشگاه Stanford مجموعهای تازه از درسهای آزاد (Open Lectures) در زمینه هوش مصنوعی و یادگیری ماشین را با تدریس مستقیم Andrew Ng — بنیانگذار Coursera و از پیشگامان آموزش مدرن هوش مصنوعی — منتشر کرده است. 🤖📚
---
🧠 محتوای دوره:
✳️آموزش شبکههای عصبی و اصول آموزش مدلهای AI
✳️طراحی و ساخت عاملهای هوشمند (AI Agents)
✳️نکات حرفهای برای پیشرفت شغلی در حوزه هوش مصنوعی
✳️تمرینهای عملی با فریمورکهای مدرن AI (مثل PyTorch و TensorFlow)
✳️مناسب برای مبتدیان تا متخصصان حرفهای
---
💡 این دوره بخشی از برنامه جهانی دانشگاه استنفورد برای دسترسی همگانی به آموزشهای AI است و بهصورت کاملاً رایگان منتشر میشود.
📘 لینک دوره:
Stanford AI Lectures – Andrew Ng
https://www.youtube.com/watch?v=_NLHFoVNlbg
👨🏫 اندرو اِنجی همچنان همان کاری را انجام میدهد که مدلهای هوش مصنوعی از آن ناتواناند:
آموزش انسانها برای تفکر مانند ماشینها. 💬
#AI #MachineLearning #Stanford #AndrewNg #Education #Coursera #DeepLearning @rss_ai_ir
👍2
🔥 پژوهشی تازه نشان میدهد که GPT-6 ممکن است نه فقط هوشمندتر، بلکه از نظر محاسباتی «زنده» باشد!
🧠 مقالهای با عنوان SEAL (Self-Adapting Language Models) در arXiv:2506.10943 منتشر شده که توضیح میدهد چگونه یک مدل زبانی میتواند پس از استقرار در دنیای واقعی، به یادگیری مداوم ادامه دهد — بدون نیاز به بازآموزی (retraining).
چند نفر از نویسندگان SEAL اکنون در OpenAI فعالیت میکنند 👀 و احتمال زیادی وجود دارد که این فناوری در GPT-6 به کار گرفته شود.
ویژگیهای کلیدی SEAL:
📚 یادگیری از دادههای جدید در زمان واقعی
🔧 ترمیم خودکار دانش تخریبشده
🧩 ایجاد حافظههای پایدار در میان جلسات مختلف
اگر GPT-6 این معماری را بپذیرد، دیگر صرفاً از دادهها استفاده نخواهد کرد — بلکه آنها را جذب میکند.
مدلی که با تغییر جهان، خودش هم تغییر میکند و هر روز بهتر میشود.
📈 این میتواند آغاز عصر یادگیری پیوسته باشد — پایانی بر دورهی مدلهای ثابت و منجمد.
به فصل جدید خوش آمدید.
https://arxiv.org/abs/2506.10943
@rss_ai_ir
#GPT6 #OpenAI #SEAL #AI #ContinuousLearning #MachineLearning
🧠 مقالهای با عنوان SEAL (Self-Adapting Language Models) در arXiv:2506.10943 منتشر شده که توضیح میدهد چگونه یک مدل زبانی میتواند پس از استقرار در دنیای واقعی، به یادگیری مداوم ادامه دهد — بدون نیاز به بازآموزی (retraining).
چند نفر از نویسندگان SEAL اکنون در OpenAI فعالیت میکنند 👀 و احتمال زیادی وجود دارد که این فناوری در GPT-6 به کار گرفته شود.
ویژگیهای کلیدی SEAL:
📚 یادگیری از دادههای جدید در زمان واقعی
🔧 ترمیم خودکار دانش تخریبشده
🧩 ایجاد حافظههای پایدار در میان جلسات مختلف
اگر GPT-6 این معماری را بپذیرد، دیگر صرفاً از دادهها استفاده نخواهد کرد — بلکه آنها را جذب میکند.
مدلی که با تغییر جهان، خودش هم تغییر میکند و هر روز بهتر میشود.
📈 این میتواند آغاز عصر یادگیری پیوسته باشد — پایانی بر دورهی مدلهای ثابت و منجمد.
به فصل جدید خوش آمدید.
https://arxiv.org/abs/2506.10943
@rss_ai_ir
#GPT6 #OpenAI #SEAL #AI #ContinuousLearning #MachineLearning
👍2👏1
🤗 چه کسانی واقعاً محرک هوش مصنوعی متنباز هستند؟
تحلیل ۵۰ مدل برتر از نظر دانلود در Hugging Face
---
📊 مطالعهی جدید نشان میدهد که کدام سازمانها و چه نوع مدلهایی ستون فقرات اکوسیستم open-source AI را تشکیل میدهند.
---
🔥 نتایج کلیدی:
📦 تنها ۵۰ مدل (۳.۴٪ از کل مدلها) بیش از ۸۰٪ از ۴۵ میلیارد دانلود را به خود اختصاص دادهاند.
یعنی بیشتر فعالیتها حول محور گروه کوچکی از رهبران میچرخد — همانهایی که چهرهی اصلی AI متنباز را میسازند.
---
📉 اندازه مهم است (کوچکتر = بهتر):
♻️۹۲.۵٪ دانلودها مربوط به مدلهایی با کمتر از ۱ میلیارد پارامتر
♻️۸۶.۳٪ < ۵۰۰ میلیون
♻️۷۰٪ < ۲۰۰ میلیون
♻️۴۰٪ < ۱۰۰ میلیون
✅ نتیجه واضح است: در دنیای open-source، مدلهای سبک، سریع و قابل اجرا روی دستگاههای محلی برندهاند.
---
🧠 محبوبترین حوزهها:
♻️مدل NLP (پردازش زبان طبیعی) — ۵۸.۱٪
♻️بینایی کامپیوتر — ۲۱.۲٪
♻️صوت — ۱۵.۱٪
♻️چندوجهی — ۳.۳٪
♻️دادههای زمانی — ۱.۷٪
---
🏢 چه کسانی این مدلها را میسازند؟
♻️شرکتها — ۶۳.۲٪ (گوگل پیشتاز است)
♻️دانشگاهها — ۲۰.۷٪
♻️توسعهدهندگان مستقل — ۱۲.۱٪
♻️سازمانهای غیرانتفاعی — ۳.۸٪
♻️آزمایشگاههای دیگر — ۰.۳٪
---
⚙️ چه نوع مدلهایی محبوبترند؟
♻️مدل Encoderهای متنی — ۴۵٪ از کل دانلودها
♻️مدل Decoderها — ۹.۵٪
♻️مدل Encoder-Decoderها — ۳٪
📌 بر خلاف هیاهوی رسانهای پیرامون LLMها، کاربران عمدتاً مدلهای کاربردی و کوچک را دانلود میکنند که به راحتی در محصولات واقعی ادغام میشوند.
---
🌍 پراکندگی جغرافیایی:
ایالات متحده با اختلاف پیشتاز است:
♻️۱۸ بار در میان ۵۰ مدل برتر دیده میشود.
♻️۵۶.۴٪ از کل دانلودها از مدلهای ساخت آمریکا هستند.
---
💡 نتیجه نهایی:
هوش مصنوعی متنباز نه به لطف غولهایی با تریلیون پارامتر، بلکه به کمک مدلهای فشرده، سریع و کاربردی زنده است — همانهایی که واقعاً در پروژهها و محصولات استفاده میشوند.
---
📖 منبع کامل: Hugging Face Blog
@rss_ai_ir
#AI #HuggingFace #OpenSource #MachineLearning #LLM #AITrends
تحلیل ۵۰ مدل برتر از نظر دانلود در Hugging Face
---
📊 مطالعهی جدید نشان میدهد که کدام سازمانها و چه نوع مدلهایی ستون فقرات اکوسیستم open-source AI را تشکیل میدهند.
---
🔥 نتایج کلیدی:
📦 تنها ۵۰ مدل (۳.۴٪ از کل مدلها) بیش از ۸۰٪ از ۴۵ میلیارد دانلود را به خود اختصاص دادهاند.
یعنی بیشتر فعالیتها حول محور گروه کوچکی از رهبران میچرخد — همانهایی که چهرهی اصلی AI متنباز را میسازند.
---
📉 اندازه مهم است (کوچکتر = بهتر):
♻️۹۲.۵٪ دانلودها مربوط به مدلهایی با کمتر از ۱ میلیارد پارامتر
♻️۸۶.۳٪ < ۵۰۰ میلیون
♻️۷۰٪ < ۲۰۰ میلیون
♻️۴۰٪ < ۱۰۰ میلیون
✅ نتیجه واضح است: در دنیای open-source، مدلهای سبک، سریع و قابل اجرا روی دستگاههای محلی برندهاند.
---
🧠 محبوبترین حوزهها:
♻️مدل NLP (پردازش زبان طبیعی) — ۵۸.۱٪
♻️بینایی کامپیوتر — ۲۱.۲٪
♻️صوت — ۱۵.۱٪
♻️چندوجهی — ۳.۳٪
♻️دادههای زمانی — ۱.۷٪
---
🏢 چه کسانی این مدلها را میسازند؟
♻️شرکتها — ۶۳.۲٪ (گوگل پیشتاز است)
♻️دانشگاهها — ۲۰.۷٪
♻️توسعهدهندگان مستقل — ۱۲.۱٪
♻️سازمانهای غیرانتفاعی — ۳.۸٪
♻️آزمایشگاههای دیگر — ۰.۳٪
---
⚙️ چه نوع مدلهایی محبوبترند؟
♻️مدل Encoderهای متنی — ۴۵٪ از کل دانلودها
♻️مدل Decoderها — ۹.۵٪
♻️مدل Encoder-Decoderها — ۳٪
📌 بر خلاف هیاهوی رسانهای پیرامون LLMها، کاربران عمدتاً مدلهای کاربردی و کوچک را دانلود میکنند که به راحتی در محصولات واقعی ادغام میشوند.
---
🌍 پراکندگی جغرافیایی:
ایالات متحده با اختلاف پیشتاز است:
♻️۱۸ بار در میان ۵۰ مدل برتر دیده میشود.
♻️۵۶.۴٪ از کل دانلودها از مدلهای ساخت آمریکا هستند.
---
💡 نتیجه نهایی:
هوش مصنوعی متنباز نه به لطف غولهایی با تریلیون پارامتر، بلکه به کمک مدلهای فشرده، سریع و کاربردی زنده است — همانهایی که واقعاً در پروژهها و محصولات استفاده میشوند.
---
📖 منبع کامل: Hugging Face Blog
@rss_ai_ir
#AI #HuggingFace #OpenSource #MachineLearning #LLM #AITrends
👍1