⭐ مدل VibeThinker-1.5B؛ مدل کوچک اما رکوردشکن در استدلال
این مدل ۱.۵ میلیارد پارامتری با وجود اندازهی بسیار کوچک، در آزمونهای استدلالی به نتایج SOTA رسیده است.
🚀 عملکرد:
در AIME24/25 و HMMT25 جزو بهترینهاست و حتی مدل DeepSeek R1-0120 را در مسائل ریاضی پشت سر میگذارد. در برنامهنویسی رقابتی هم بالاتر از مدلهای همحجم ظاهر شده است.
⚡ بهرهوری:
فقط ۱.۵B پارامتر — یعنی ۱۰۰ تا ۶۰۰ برابر کوچکتر از مدلهایی مثل Kimi K2 و DeepSeek R1.
💰 هزینه:
کل هزینهٔ پستمرین حدود ۷.۸ هزار دلار بوده؛ یعنی ۳۰ تا ۶۰ برابر ارزانتر از DeepSeek R1 یا MiniMax-M1.
این مدل بر پایهٔ Spectrum-to-Signal Principle (SSP) و فریمورک MGPO ساخته شده تا فرآیند استدلال را بهینه کند.
📦 Model:
hf.co/WeiboAI/VibeThinker-1.5B
💻 GitHub:
github.com/WeiboAI/VibeThinker
📄 Arxiv:
arxiv.org/abs/2511.06221
#AI #LLM #Reasoning #OpenSource #SmallModel @rss_ai_ir
این مدل ۱.۵ میلیارد پارامتری با وجود اندازهی بسیار کوچک، در آزمونهای استدلالی به نتایج SOTA رسیده است.
🚀 عملکرد:
در AIME24/25 و HMMT25 جزو بهترینهاست و حتی مدل DeepSeek R1-0120 را در مسائل ریاضی پشت سر میگذارد. در برنامهنویسی رقابتی هم بالاتر از مدلهای همحجم ظاهر شده است.
⚡ بهرهوری:
فقط ۱.۵B پارامتر — یعنی ۱۰۰ تا ۶۰۰ برابر کوچکتر از مدلهایی مثل Kimi K2 و DeepSeek R1.
💰 هزینه:
کل هزینهٔ پستمرین حدود ۷.۸ هزار دلار بوده؛ یعنی ۳۰ تا ۶۰ برابر ارزانتر از DeepSeek R1 یا MiniMax-M1.
این مدل بر پایهٔ Spectrum-to-Signal Principle (SSP) و فریمورک MGPO ساخته شده تا فرآیند استدلال را بهینه کند.
📦 Model:
hf.co/WeiboAI/VibeThinker-1.5B
💻 GitHub:
github.com/WeiboAI/VibeThinker
📄 Arxiv:
arxiv.org/abs/2511.06221
#AI #LLM #Reasoning #OpenSource #SmallModel @rss_ai_ir