“The Best Public Datasets for Machine Learning and Data Science” by Stacy Stanford
https://datasimplifier.com/best-data-analyst-projects-for-freshers/
https://toolbox.google.com/datasetsearch
https://www.kaggle.com/datasets
https://mlr.cs.umass.edu/ml/
https://www.visualdata.io/
https://guides.library.cmu.edu/machine-learning/datasets
https://www.data.gov/
https://nces.ed.gov/
https://www.ukdataservice.ac.uk/
https://datausa.io/
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.kaggle.com/xiuchengwang/python-dataset-download
https://www.quandl.com/
https://data.worldbank.org/
https://www.imf.org/en/Data
https://markets.ft.com/data/
https://trends.google.com/trends/?q=google&ctab=0&geo=all&date=all&sort=0
https://www.aeaweb.org/resources/data/us-macro-regional
https://xviewdataset.org/#dataset
https://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php
https://image-net.org/
https://cocodataset.org/
https://visualgenome.org/
https://ai.googleblog.com/2016/09/introducing-open-images-dataset.html?m=1
https://vis-www.cs.umass.edu/lfw/
https://vision.stanford.edu/aditya86/ImageNetDogs/
https://web.mit.edu/torralba/www/indoor.html
https://www.cs.jhu.edu/~mdredze/datasets/sentiment/
https://ai.stanford.edu/~amaas/data/sentiment/
https://nlp.stanford.edu/sentiment/code.html
https://help.sentiment140.com/for-students/
https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://hotpotqa.github.io/
https://www.cs.cmu.edu/~./enron/
https://snap.stanford.edu/data/web-Amazon.html
https://aws.amazon.com/datasets/google-books-ngrams/
https://u.cs.biu.ac.il/~koppel/BlogCorpus.htm
https://code.google.com/archive/p/wiki-links/downloads
https://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
https://www.yelp.com/dataset
https://t.iss.one/DataPortfolio/2
https://archive.ics.uci.edu/ml/datasets/Spambase
https://bdd-data.berkeley.edu/
https://apolloscape.auto/
https://archive.org/details/comma-dataset
https://www.cityscapes-dataset.com/
https://aplicaciones.cimat.mx/Personal/jbhayet/ccsad-dataset
https://www.vision.ee.ethz.ch/~timofter/traffic_signs/
https://cvrr.ucsd.edu/LISA/datasets.html
https://hci.iwr.uni-heidelberg.de/node/6132
https://www.lara.prd.fr/benchmarks/trafficlightsrecognition
https://computing.wpi.edu/dataset.html
https://mimic.physionet.org/
✅ Best Telegram channels to get free coding & data science resources
https://t.iss.one/addlist/4q2PYC0pH_VjZDk5
✅ Free Courses with Certificate:
https://t.iss.one/free4unow_backup
https://datasimplifier.com/best-data-analyst-projects-for-freshers/
https://toolbox.google.com/datasetsearch
https://www.kaggle.com/datasets
https://mlr.cs.umass.edu/ml/
https://www.visualdata.io/
https://guides.library.cmu.edu/machine-learning/datasets
https://www.data.gov/
https://nces.ed.gov/
https://www.ukdataservice.ac.uk/
https://datausa.io/
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.kaggle.com/xiuchengwang/python-dataset-download
https://www.quandl.com/
https://data.worldbank.org/
https://www.imf.org/en/Data
https://markets.ft.com/data/
https://trends.google.com/trends/?q=google&ctab=0&geo=all&date=all&sort=0
https://www.aeaweb.org/resources/data/us-macro-regional
https://xviewdataset.org/#dataset
https://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php
https://image-net.org/
https://cocodataset.org/
https://visualgenome.org/
https://ai.googleblog.com/2016/09/introducing-open-images-dataset.html?m=1
https://vis-www.cs.umass.edu/lfw/
https://vision.stanford.edu/aditya86/ImageNetDogs/
https://web.mit.edu/torralba/www/indoor.html
https://www.cs.jhu.edu/~mdredze/datasets/sentiment/
https://ai.stanford.edu/~amaas/data/sentiment/
https://nlp.stanford.edu/sentiment/code.html
https://help.sentiment140.com/for-students/
https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://hotpotqa.github.io/
https://www.cs.cmu.edu/~./enron/
https://snap.stanford.edu/data/web-Amazon.html
https://aws.amazon.com/datasets/google-books-ngrams/
https://u.cs.biu.ac.il/~koppel/BlogCorpus.htm
https://code.google.com/archive/p/wiki-links/downloads
https://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
https://www.yelp.com/dataset
https://t.iss.one/DataPortfolio/2
https://archive.ics.uci.edu/ml/datasets/Spambase
https://bdd-data.berkeley.edu/
https://apolloscape.auto/
https://archive.org/details/comma-dataset
https://www.cityscapes-dataset.com/
https://aplicaciones.cimat.mx/Personal/jbhayet/ccsad-dataset
https://www.vision.ee.ethz.ch/~timofter/traffic_signs/
https://cvrr.ucsd.edu/LISA/datasets.html
https://hci.iwr.uni-heidelberg.de/node/6132
https://www.lara.prd.fr/benchmarks/trafficlightsrecognition
https://computing.wpi.edu/dataset.html
https://mimic.physionet.org/
✅ Best Telegram channels to get free coding & data science resources
https://t.iss.one/addlist/4q2PYC0pH_VjZDk5
✅ Free Courses with Certificate:
https://t.iss.one/free4unow_backup
👍3
Essential Tools, Libraries, and Frameworks to learn Artificial Intelligence
1. Programming Languages:
Python
R
Java
Julia
2. AI Frameworks:
TensorFlow
PyTorch
Keras
MXNet
Caffe
3. Machine Learning Libraries:
Scikit-learn: For classical machine learning models.
XGBoost: For boosting algorithms.
LightGBM: For gradient boosting models.
4. Deep Learning Tools:
TensorFlow
PyTorch
Keras
Theano
5. Natural Language Processing (NLP) Tools:
NLTK (Natural Language Toolkit)
SpaCy
Hugging Face Transformers
Gensim
6. Computer Vision Libraries:
OpenCV
DLIB
Detectron2
7. Reinforcement Learning Frameworks:
Stable-Baselines3
RLlib
OpenAI Gym
8. AI Development Platforms:
IBM Watson
Google AI Platform
Microsoft AI
9. Data Visualization Tools:
Matplotlib
Seaborn
Plotly
Tableau
10. Robotics Frameworks:
ROS (Robot Operating System)
MoveIt!
11. Big Data Tools for AI:
Apache Spark
Hadoop
12. Cloud Platforms for AI Deployment:
Google Cloud AI
AWS SageMaker
Microsoft Azure AI
13. Popular AI APIs and Services:
Google Cloud Vision API
Microsoft Azure Cognitive Services
IBM Watson AI APIs
14. Learning Resources and Communities:
Kaggle
GitHub AI Projects
Papers with Code
Share with credits: https://t.iss.one/machinelearning_deeplearning
ENJOY LEARNING 👍👍
1. Programming Languages:
Python
R
Java
Julia
2. AI Frameworks:
TensorFlow
PyTorch
Keras
MXNet
Caffe
3. Machine Learning Libraries:
Scikit-learn: For classical machine learning models.
XGBoost: For boosting algorithms.
LightGBM: For gradient boosting models.
4. Deep Learning Tools:
TensorFlow
PyTorch
Keras
Theano
5. Natural Language Processing (NLP) Tools:
NLTK (Natural Language Toolkit)
SpaCy
Hugging Face Transformers
Gensim
6. Computer Vision Libraries:
OpenCV
DLIB
Detectron2
7. Reinforcement Learning Frameworks:
Stable-Baselines3
RLlib
OpenAI Gym
8. AI Development Platforms:
IBM Watson
Google AI Platform
Microsoft AI
9. Data Visualization Tools:
Matplotlib
Seaborn
Plotly
Tableau
10. Robotics Frameworks:
ROS (Robot Operating System)
MoveIt!
11. Big Data Tools for AI:
Apache Spark
Hadoop
12. Cloud Platforms for AI Deployment:
Google Cloud AI
AWS SageMaker
Microsoft Azure AI
13. Popular AI APIs and Services:
Google Cloud Vision API
Microsoft Azure Cognitive Services
IBM Watson AI APIs
14. Learning Resources and Communities:
Kaggle
GitHub AI Projects
Papers with Code
Share with credits: https://t.iss.one/machinelearning_deeplearning
ENJOY LEARNING 👍👍
👍9