Data Science Projects
51.9K subscribers
372 photos
1 video
57 files
329 links
Perfect channel for Data Scientists

Learn Python, AI, R, Machine Learning, Data Science and many more

Admin: @love_data
Download Telegram
sergio-j-rojas-g-learning-scipy-for-numerical-and-2015.pdf
3.5 MB
Learning SciPy for Numerical and Scientific Computing
Sergio J. Rojas G., 2015
πŸ‘7
Marketing Research with R and Python.pdf
22.7 MB
Marketing Research with R and Python
Howard Pong Yuen Lam, 2023
πŸ‘4
1680810253047.docx
54.8 KB
One of the most effective ways to learn machine learning is by getting hands-on experience and building something yourself.

While finding inspiration can be challenging, exploring projects by others can open your eyes to the endless possibilities. πŸ’‘

The projects I am sharing are perfect for those new to machine learning and curious about its potential.
πŸ‘7
knn notes
20 Python Libraries You Aren't Using (But Should).pdf
4.1 MB
20 Python Libraries You
Aren’t Using (But Should)

Caleb Hattingh, 2016
RW3.pdf
796.6 KB
Classification notes
πŸ‘5❀1
Advice from 25 Amazing Data Scientist.pdf
2.8 MB
Resource Pdf :- Advice from 25 Amazing Data Scientists.

Source :- Jake Klamka
πŸ‘5❀2
pandas.pdf
548.9 KB
Data_Science Pandas
❀4πŸ‘4
numpy.pdf
1.4 MB
Data_science Numpy cheat sheet
πŸ‘2❀1😱1
Data Scientist Roadmap
|
|-- 1. Basic Foundations
|   |-- a. Mathematics
|   |   |-- i. Linear Algebra
|   |   |-- ii. Calculus
|   |   |-- iii. Probability
|   |   -- iv. Statistics
|   |
|   |-- b. Programming
|   |   |-- i. Python
|   |   |   |-- 1. Syntax and Basic Concepts
|   |   |   |-- 2. Data Structures
|   |   |   |-- 3. Control Structures
|   |   |   |-- 4. Functions
|   |   |  
-- 5. Object-Oriented Programming
|   |   |
|   |   -- ii. R (optional, based on preference)
|   |
|   |-- c. Data Manipulation
|   |   |-- i. Numpy (Python)
|   |   |-- ii. Pandas (Python)
|   |  
-- iii. Dplyr (R)
|   |
|   -- d. Data Visualization
|       |-- i. Matplotlib (Python)
|       |-- ii. Seaborn (Python)
|      
-- iii. ggplot2 (R)
|
|-- 2. Data Exploration and Preprocessing
|   |-- a. Exploratory Data Analysis (EDA)
|   |-- b. Feature Engineering
|   |-- c. Data Cleaning
|   |-- d. Handling Missing Data
|   -- e. Data Scaling and Normalization
|
|-- 3. Machine Learning
|   |-- a. Supervised Learning
|   |   |-- i. Regression
|   |   |   |-- 1. Linear Regression
|   |   |  
-- 2. Polynomial Regression
|   |   |
|   |   -- ii. Classification
|   |       |-- 1. Logistic Regression
|   |       |-- 2. k-Nearest Neighbors
|   |       |-- 3. Support Vector Machines
|   |       |-- 4. Decision Trees
|   |      
-- 5. Random Forest
|   |
|   |-- b. Unsupervised Learning
|   |   |-- i. Clustering
|   |   |   |-- 1. K-means
|   |   |   |-- 2. DBSCAN
|   |   |   -- 3. Hierarchical Clustering
|   |   |
|   |  
-- ii. Dimensionality Reduction
|   |       |-- 1. Principal Component Analysis (PCA)
|   |       |-- 2. t-Distributed Stochastic Neighbor Embedding (t-SNE)
|   |       -- 3. Linear Discriminant Analysis (LDA)
|   |
|   |-- c. Reinforcement Learning
|   |-- d. Model Evaluation and Validation
|   |   |-- i. Cross-validation
|   |   |-- ii. Hyperparameter Tuning
|   |  
-- iii. Model Selection
|   |
|   -- e. ML Libraries and Frameworks
|       |-- i. Scikit-learn (Python)
|       |-- ii. TensorFlow (Python)
|       |-- iii. Keras (Python)
|      
-- iv. PyTorch (Python)
|
|-- 4. Deep Learning
|   |-- a. Neural Networks
|   |   |-- i. Perceptron
|   |   -- ii. Multi-Layer Perceptron
|   |
|   |-- b. Convolutional Neural Networks (CNNs)
|   |   |-- i. Image Classification
|   |   |-- ii. Object Detection
|   |  
-- iii. Image Segmentation
|   |
|   |-- c. Recurrent Neural Networks (RNNs)
|   |   |-- i. Sequence-to-Sequence Models
|   |   |-- ii. Text Classification
|   |   -- iii. Sentiment Analysis
|   |
|   |-- d. Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)
|   |   |-- i. Time Series Forecasting
|   |  
-- ii. Language Modeling
|   |
|   -- e. Generative Adversarial Networks (GANs)
|       |-- i. Image Synthesis
|       |-- ii. Style Transfer
|      
-- iii. Data Augmentation
|
|-- 5. Big Data Technologies
|   |-- a. Hadoop
|   |   |-- i. HDFS
|   |   -- ii. MapReduce
|   |
|   |-- b. Spark
|   |   |-- i. RDDs
|   |   |-- ii. DataFrames
|   |  
-- iii. MLlib
|   |
|   -- c. NoSQL Databases
|       |-- i. MongoDB
|       |-- ii. Cassandra
|       |-- iii. HBase
|      
-- iv. Couchbase
|
|-- 6. Data Visualization and Reporting
|   |-- a. Dashboarding Tools
|   |   |-- i. Tableau
|   |   |-- ii. Power BI
|   |   |-- iii. Dash (Python)
|   |   -- iv. Shiny (R)
|   |
|   |-- b. Storytelling with Data
|  
-- c. Effective Communication
|
|-- 7. Domain Knowledge and Soft Skills
|   |-- a. Industry-specific Knowledge
|   |-- b. Problem-solving
|   |-- c. Communication Skills
|   |-- d. Time Management
|   -- e. Teamwork
|
-- 8. Staying Updated and Continuous Learning
    |-- a. Online Courses
    |-- b. Books and Research Papers
    |-- c. Blogs and Podcasts
    |-- d. Conferences and Workshops
    `-- e. Networking and Community Engagement
πŸ‘35πŸ₯°2