Data Science Projects
52.3K subscribers
379 photos
1 video
57 files
334 links
Perfect channel for Data Scientists

Learn Python, AI, R, Machine Learning, Data Science and many more

Admin: @love_data
Download Telegram
๐Ÿค– How Artificial Intelligence Works...
โค3
When youโ€™re in an interview, itโ€™s super important to know how to talk about your projects in a way that impresses the interviewer. Here are some key points to help you do just that:

โžค ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐—ข๐˜ƒ๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„:
- Start with a quick summary of the project you worked on. What was it all about? What were the main goals? Keep it short and sweet something you can explain in about 30 seconds.

โžค ๐—ฃ๐—ฟ๐—ผ๐—ฏ๐—น๐—ฒ๐—บ ๐—ฆ๐˜๐—ฎ๐˜๐—ฒ๐—บ๐—ฒ๐—ป๐˜:
- What problem were you trying to solve with this project? Explain why this problem was important and needed addressing.

โžค ๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ฒ๐—ฑ ๐—ฆ๐—ผ๐—น๐˜‚๐˜๐—ถ๐—ผ๐—ป:
- Describe the solution you came up with. How does it work, and why is it a good fix for the problem?

โžค ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ผ๐—น๐—ฒ:
- Talk about what you specifically did. What were your main tasks? Did you face any challenges, and how did you overcome them? Make sure itโ€™s clear whether you were leading the project, a key player, or supporting the team.

โžค ๐—ง๐—ฒ๐—ฐ๐—ต๐—ป๐—ผ๐—น๐—ผ๐—ด๐—ถ๐—ฒ๐˜€ ๐—ฎ๐—ป๐—ฑ ๐—ง๐—ผ๐—ผ๐—น๐˜€:
- Mention the tech and tools you used. This shows your technical know-how and your ability to choose the right tools for the job.

โžค ๐—œ๐—บ๐—ฝ๐—ฎ๐—ฐ๐˜ ๐—ฎ๐—ป๐—ฑ ๐—”๐—ฐ๐—ต๐—ถ๐—ฒ๐˜ƒ๐—ฒ๐—บ๐—ฒ๐—ป๐˜๐˜€:
- Share the results of your project. Did it make things better? How? Mention any improvements, efficiencies, or positive feedback you got.

โžค ๐—ง๐—ฒ๐—ฎ๐—บ ๐—–๐—ผ๐—น๐—น๐—ฎ๐—ฏ๐—ผ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป:
- Talk about how you collaborated. What was your role in the team? How did you communicate and contribute to the teamโ€™s success?

โžค ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ฎ๐—ป๐—ฑ ๐——๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜:
- Reflect on what you learned from the project. What new skills did you gain, and what would you do differently next time?

โžค ๐—ง๐—ถ๐—ฝ๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ฃ๐—ฟ๐—ฒ๐—ฝ๐—ฎ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป:
- Be ready with a 30 second elevator pitch about your projects, and also have a five-minute detailed overview ready.
- If thereโ€™s a pause after you describe the project, donโ€™t hesitate to ask if theyโ€™d like more details or if thereโ€™s a specific part theyโ€™re interested in.

By preparing your project details thoroughly and understanding what the interviewer is looking for, you can talk about your experience in a way that really showcases your skills and increases your chances of getting the job.

Coding Projects: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
โค1
Data Science Cheatsheet ๐Ÿ’ช
โค5
VS Code Shortcuts
โค4
๐Ÿš€ Excel vs SQL vs Python (Pandas):

1๏ธโƒฃ Filtering Data
โ†ณ Excel: =FILTER(A2:D100, B2:B100>50) (Excel 365 users)
โ†ณ SQL: SELECT * FROM table WHERE column > 50;
โ†ณ Python: df_filtered = df[df['column'] > 50]

2๏ธโƒฃ Sorting Data
โ†ณ Excel: Data โ†’ Sort (or =SORT(A2:A100, 1, TRUE))
โ†ณ SQL: SELECT * FROM table ORDER BY column ASC;
โ†ณ Python: df_sorted = df.sort_values(by="column")

3๏ธโƒฃ Counting Rows
โ†ณ Excel: =COUNTA(A:A)
โ†ณ SQL: SELECT COUNT(*) FROM table;
โ†ณ Python: row_count = len(df)

4๏ธโƒฃ Removing Duplicates
โ†ณ Excel: Data โ†’ Remove Duplicates
โ†ณ SQL: SELECT DISTINCT * FROM table;
โ†ณ Python: df_unique = df.drop_duplicates()

5๏ธโƒฃ Joining Tables
โ†ณ Excel: Power Query โ†’ Merge Queries (or VLOOKUP/XLOOKUP)
โ†ณ SQL: SELECT * FROM table1 JOIN table2 ON table1.id = table2.id;
โ†ณ Python: df_merged = pd.merge(df1, df2, on="id")

6๏ธโƒฃ Ranking Data
โ†ณ Excel: =RANK.EQ(A2, $A$2:$A$100)
โ†ณ SQL: SELECT column, RANK() OVER (ORDER BY column DESC) AS rank FROM table;
โ†ณ Python: df["rank"] = df["column"].rank(method="min", ascending=False)

7๏ธโƒฃ Moving Average Calculation
โ†ณ Excel: =AVERAGE(B2:B4) (manually for rolling window)
โ†ณ SQL: SELECT date, AVG(value) OVER (ORDER BY date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS moving_avg FROM table;
โ†ณ Python: df["moving_avg"] = df["value"].rolling(window=3).mean()

8๏ธโƒฃ Running Total
โ†ณ Excel: =SUM($B$2:B2) (drag down)
โ†ณ SQL: SELECT date, SUM(value) OVER (ORDER BY date) AS running_total FROM table;
โ†ณ Python: df["running_total"] = df["value"].cumsum()
โค7
๐Ÿ“˜ SQL Challenges for Data Analytics โ€“ With Explanation ๐Ÿง 

(Beginner โžก๏ธ Advanced)

1๏ธโƒฃ Select Specific Columns

SELECT name, email FROM users;



This fetches only the name and email columns from the users table.

โœ”๏ธ Used when you donโ€™t want all columns from a table.


2๏ธโƒฃ Filter Records with WHERE

SELECT * FROM users WHERE age > 30;



The WHERE clause filters rows where age is greater than 30.

โœ”๏ธ Used for applying conditions on data.


3๏ธโƒฃ ORDER BY Clause

SELECT * FROM users ORDER BY registered_at DESC;



Sorts all users based on registered_at in descending order.
โœ”๏ธ Helpful to get latest data first.


4๏ธโƒฃ Aggregate Functions (COUNT, AVG)

SELECT COUNT(*) AS total_users, AVG(age) AS avg_age FROM users;


Explanation:
- COUNT(*) counts total rows (users).
- AVG(age) calculates the average age.
โœ”๏ธ Used for quick stats from tables.


5๏ธโƒฃ GROUP BY Usage

SELECT city, COUNT(*) AS user_count FROM users GROUP BY city;

Groups data by city and counts users in each group.

โœ”๏ธ Use when you want grouped summaries.


6๏ธโƒฃ JOIN Tables

SELECT users.name, orders.amount  
FROM users
JOIN orders ON users.id = orders.user_id;



Fetches user names along with order amounts by joining users and orders on matching IDs.
โœ”๏ธ Essential when combining data from multiple tables.


7๏ธโƒฃ Use of HAVING

SELECT city, COUNT(*) AS total  
FROM users
GROUP BY city
HAVING COUNT(*) > 5;



Like WHERE, but used with aggregates. This filters cities with more than 5 users.
โœ”๏ธ **Use HAVING after GROUP BY.**


8๏ธโƒฃ Subqueries

SELECT * FROM users  
WHERE salary > (SELECT AVG(salary) FROM users);



Finds users whose salary is above the average. The subquery calculates the average salary first.

โœ”๏ธ Nested queries for dynamic filtering9๏ธโƒฃ CASE Statementnt**

SELECT name,  
CASE
WHEN age < 18 THEN 'Teen'
WHEN age <= 40 THEN 'Adult'
ELSE 'Senior'
END AS age_group
FROM users;



Adds a new column that classifies users into categories based on age.
โœ”๏ธ Powerful for conditional logic.

๐Ÿ”Ÿ Window Functions (Advanced)

SELECT name, city, score,  
RANK() OVER (PARTITION BY city ORDER BY score DESC) AS rank
FROM users;



Ranks users by score *within each city*.

SQL Learning Series: https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v/1075
โค1
How do you start AI and ML ?

Where do you go to learn these skills? What courses are the best?

Thereโ€™s no best answer๐Ÿฅบ. Everyoneโ€™s path will be different. Some people learn better with books, others learn better through videos.

Whatโ€™s more important than how you start is why you start.

Start with why.

Why do you want to learn these skills?
Do you want to make money?
Do you want to build things?
Do you want to make a difference?
Again, no right reason. All are valid in their own way.

Start with why because having a why is more important than how. Having a why means when it gets hard and it will get hard, youโ€™ve got something to turn to. Something to remind you why you started.

Got a why? Good. Time for some hard skills.

I can only recommend what Iโ€™ve tried every week new course lauch better than others its difficult to recommend any course

You can completed courses from (in order):

Treehouse / youtube( free) - Introduction to Python

Udacity - Deep Learning & AI Nanodegree

fast.ai - Part 1and Part 2

Theyโ€™re all world class. Iโ€™m a visual learner. I learn better seeing things being done/explained to me on. So all of these courses reflect that.

If youโ€™re an absolute beginner, start with some introductory Python courses and when youโ€™re a bit more confident, move into data science, machine learning and AI.

Join for more: https://t.iss.one/machinelearning_deeplearning

๐Ÿ‘‰Telegram Link: https://t.iss.one/addlist/4q2PYC0pH_VjZDk5

Like for more โค๏ธ

All the best ๐Ÿ‘๐Ÿ‘
โค2
Free Access to our premium Data Science Channel
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y

Amazing premium resources only for my subscribers

๐ŸŽ Free Data Science Courses
๐ŸŽ Machine Learning Notes
๐ŸŽ Python Free Learning Resources
๐ŸŽ Learn AI with ChatGPT
๐ŸŽ Build Chatbots using LLM
๐ŸŽ Learn Generative AI
๐ŸŽ Free Coding Certified Courses

Join fast โค๏ธ

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค3
๐Ÿš€๐Ÿ”ฅ ๐—•๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ๐—ป ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ ๐—•๐˜‚๐—ถ๐—น๐—ฑ๐—ฒ๐—ฟ โ€” ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ
Master the most in-demand AI skill in todayโ€™s job market: building autonomous AI systems.

In Ready Tensorโ€™s free, project-first program, youโ€™ll create three portfolio-ready projects using ๐—Ÿ๐—ฎ๐—ป๐—ด๐—–๐—ต๐—ฎ๐—ถ๐—ป, ๐—Ÿ๐—ฎ๐—ป๐—ด๐—š๐—ฟ๐—ฎ๐—ฝ๐—ต, and vector databases โ€” and deploy production-ready agents that employers will notice.

Includes guided lectures, videos, and code.
๐—™๐—ฟ๐—ฒ๐—ฒ. ๐—ฆ๐—ฒ๐—น๐—ณ-๐—ฝ๐—ฎ๐—ฐ๐—ฒ๐—ฑ. ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ-๐—ฐ๐—ต๐—ฎ๐—ป๐—ด๐—ถ๐—ป๐—ด.

๐Ÿ‘‰ Apply now: https://go.readytensor.ai/cert-542-agentic-ai-certification

React โค๏ธ for more free resources
โค6๐Ÿ‘1