Data Science Projects
52.3K subscribers
379 photos
1 video
57 files
334 links
Perfect channel for Data Scientists

Learn Python, AI, R, Machine Learning, Data Science and many more

Admin: @love_data
Download Telegram
When starting off your data analytics journey you DON'T need to be a SQL guru from the get-go.

In fact, most SQL skills you will only learn on the job with:

- real business problems.
- actual data sets.
- imperfect data architecture.
- other people to collaborate with.

So be kind to yourself, give yourself time to grow and above all...

try to become proficient at SQL rather than perfect.

The rest will take care of itself along the way! ๐Ÿ˜‰
๐Ÿ‘4
Guys, Big Announcement!

Weโ€™ve officially hit 2 MILLION followers โ€” and itโ€™s time to take our Python journey to the next level!

Iโ€™m super excited to launch the 30-Day Python Coding Challenge โ€” perfect for absolute beginners, interview prep, or anyone wanting to build real projects from scratch.

This challenge is your daily dose of Python โ€” bite-sized lessons with hands-on projects so you actually code every day and level up fast.

Hereโ€™s what youโ€™ll learn over the next 30 days:

Week 1: Python Fundamentals

- Variables & Data Types (Build your own bio/profile script)

- Operators (Mini calculator to sharpen math skills)

- Strings & String Methods (Word counter & palindrome checker)

- Lists & Tuples (Manage a grocery list like a pro)

- Dictionaries & Sets (Create your own contact book)

- Conditionals (Make a guess-the-number game)

- Loops (Multiplication tables & pattern printing)

Week 2: Functions & Logic โ€” Make Your Code Smarter

- Functions (Prime number checker)

- Function Arguments (Tip calculator with custom tips)

- Recursion Basics (Factorials & Fibonacci series)

- Lambda, map & filter (Process lists efficiently)

- List Comprehensions (Filter odd/even numbers easily)

- Error Handling (Build a safe input reader)

- Review + Mini Project (Command-line to-do list)


Week 3: Files, Modules & OOP

- Reading & Writing Files (Save and load notes)

- Custom Modules (Create your own utility math module)

- Classes & Objects (Student grade tracker)

- Inheritance & OOP (RPG character system)

- Dunder Methods (Build a custom string class)

- OOP Mini Project (Simple bank account system)

- Review & Practice (Quiz app using OOP concepts)


Week 4: Real-World Python & APIs โ€” Build Cool Apps

- JSON & APIs (Fetch weather data)

- Web Scraping (Extract titles from HTML)

- Regular Expressions (Find emails & phone numbers)

- Tkinter GUI (Create a simple counter app)

- CLI Tools (Command-line calculator with argparse)

- Automation (File organizer script)

- Final Project (Choose, build, and polish your app!)

React with โค๏ธ if you're ready for this new journey

You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1661
โค1๐Ÿ‘1
This post is for beginners who decided to learn Data Science. I want to tell you that becoming a data scientist is a journey (6 months - 1 year at least) and not a 1 month thing where u do some courses and you are a data scientist. There are different fields in Data Science that you have to first get familiar and strong in basics as well as do hands-on to get the abilities that are required to function in a full time job opportunity. Then further delve into advanced implementations.

There are plenty of roadmaps and online content both paid and free that you can follow. In a nutshell. A few essential things that will be necessary and in no particular order that will at least get your data science journey started are below:

Basic Statistics, Linear Algebra, calculus, probability
Programming language (R or Python) - Preferably Python if you rather want to later on move into a developer role instead of sticking to data science.
Machine Learning - All of the above will be used here to implement machine learning concepts.
Data Visualisation - again it could be simple excel or via r/python libraries or tools like Tableau,PowerBI etc.

This can be overwhelming but again its just an indication of what lies ahead. So most important thing is to just START instead of just contemplating the best way to go about this. Since lot of things can be learnt independently as well in no particular order.

You can use the below Sources to prepare your own roadmap:
@free4unow_backup - some free courses from here
@datasciencefun - check & search in this channel with #freecourses

Data Science - https://365datascience.pxf.io/q4m66g
Python - https://bit.ly/45rlWZE
Kaggle - https://www.kaggle.com/learn
โค4
Preparing for a SQL interview?

Focus on mastering these essential topics:

1. Joins: Get comfortable with inner, left, right, and outer joins.
Knowing when to use what kind of join is important!

2. Window Functions: Understand when to use
ROW_NUMBER, RANK(), DENSE_RANK(), LAG, and LEAD for complex analytical queries.

3. Query Execution Order: Know the sequence from FROM to
ORDER BY. This is crucial for writing efficient, error-free queries.

4. Common Table Expressions (CTEs): Use CTEs to simplify and structure complex queries for better readability.

5. Aggregations & Window Functions: Combine aggregate functions with window functions for in-depth data analysis.

6. Subqueries: Learn how to use subqueries effectively within main SQL statements for complex data manipulations.

7. Handling NULLs: Be adept at managing NULL values to ensure accurate data processing and avoid potential pitfalls.

8. Indexing: Understand how proper indexing can significantly boost query performance.

9. GROUP BY & HAVING: Master grouping data and filtering groups with HAVING to refine your query results.

10. String Manipulation Functions: Get familiar with string functions like CONCAT, SUBSTRING, and REPLACE to handle text data efficiently.

11. Set Operations: Know how to use UNION, INTERSECT, and EXCEPT to combine or compare result sets.

12. Optimizing Queries: Learn techniques to optimize your queries for performance, especially with large datasets.

Here you can find essential SQL Interview Resources๐Ÿ‘‡
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v

Like this post if you need more ๐Ÿ‘โค๏ธ

Hope it helps :)
๐Ÿ‘4
Check out the list of top 10 Python projects on GitHub given below.

1. Magenta: Explore the artist inside you with this python project. A Google Brainโ€™s brainchild, it leverages deep learning and reinforcement learning algorithms to create drawings, music, and other similar artistic products.

2. Photon: Designing web crawlers can be fun with the Photon project. It is a fast crawler designed for open-source intelligence tools. Photon project helps you perform data crawling functions, which include extracting data from URLs, e-mails, social media accounts, XML and pdf files, and Amazon buckets.

3. Mail Pile: Want to learn some encrypting tricks? This project on GitHub can help you learn to send and receive PGP encrypted electronic mails. Powered by Bayesian classifiers, it is capable of automatic tagging and handling huge volumes of email data, all organized in a clean web interface.

4. XS Strike: XS Strike helps you design a vulnerability to check your networkโ€™s security. It is a security suite developed to detect vulnerability attacks. XSS attacks inject malicious scripts into web pages. XSSโ€™s features include four handwritten parsers, a payload generator, a fuzzing engine, and a fast crawler.

5. Google Images Download: It is a script that looks for keywords and phrases to optionally download the image files. All you need to do is, replicate the source code of this project to get a sense of how it works in practice.

6. Pandas Project: Pandas library is a collection of data structures that can be used for flexible data analysis and data manipulation. Compared to other libraries, its flexibility, intuitiveness, and automated data manipulation processes make it a better choice for data manipulation.

7. Xonsh: Used for designing interactive applications without the need for command-line interpreters like Unix. It is a Python-powered Shell language that commands promptly. An easily scriptable application that comes with a standard library, and various types of variables and has its own virtual environment management system.

8. Manim: The Mathematical Animation Engine, Manim, can create video explainers. Using Python 3.7, it produces animated videos, with added illustrations and display graphs. Its source code is freely available on GitHub and for tutorials and installation guides, you can refer to their 3Blue1Brown YouTube channel.

9. AI Basketball Analysis: It is an artificial intelligence application that analyses basketball shots using an object detection concept. All you need to do is upload the files or submit them as a post requests to the API. Then the OpenPose library carries out the calculations to generate the results.

10. Rebound: A great project to put Python to use in building Stackoverflow content, this tool is built on the Urwid console user interface, and solves compiler errors. Using this tool, you can learn how the Beautiful Soup package scrapes StackOverflow and how subprocesses work to find compiler errors.
โค4๐Ÿ”ฅ2
Datasets for Data Science Projects
โค4
๐—ง๐—ผ๐—ฝ ๐— ๐—ก๐—–๐˜€ ๐—ข๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿ˜

Google :- https://pdlink.in/3H2YJX7

Microsoft :- https://pdlink.in/4iq8QlM

Infosys :- https://pdlink.in/4jsHZXf

IBM :- https://pdlink.in/3QyJyqk

Cisco :- https://pdlink.in/4fYr1xO

Enroll For FREE & Get Certified ๐ŸŽ“
โค2
Data Science Techniques
โค6
Today let's understand the fascinating world of Data Science from start.

## What is Data Science?

Data science is an interdisciplinary field that uses scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured and unstructured data. In simpler terms, data science involves obtaining, processing, and analyzing data to gain insights for various purposesยนยฒ.

### The Data Science Lifecycle

The data science lifecycle refers to the various stages a data science project typically undergoes. While each project is unique, most follow a similar structure:

1. Data Collection and Storage:
- In this initial phase, data is collected from various sources such as databases, Excel files, text files, APIs, web scraping, or real-time data streams.
- The type and volume of data collected depend on the specific problem being addressed.
- Once collected, the data is stored in an appropriate format for further processing.

2. Data Preparation:
- Often considered the most time-consuming phase, data preparation involves cleaning and transforming raw data into a suitable format for analysis.
- Tasks include handling missing or inconsistent data, removing duplicates, normalization, and data type conversions.
- The goal is to create a clean, high-quality dataset that can yield accurate and reliable analytical results.

3. Exploration and Visualization:
- During this phase, data scientists explore the prepared data to understand its patterns, characteristics, and potential anomalies.
- Techniques like statistical analysis and data visualization are used to summarize the data's main features.
- Visualization methods help convey insights effectively.

4. Model Building and Machine Learning:
- This phase involves selecting appropriate algorithms and building predictive models.
- Machine learning techniques are applied to train models on historical data and make predictions.
- Common tasks include regression, classification, clustering, and recommendation systems.

5. Model Evaluation and Deployment:
- After building models, they are evaluated using metrics such as accuracy, precision, recall, and F1-score.
- Once satisfied with the model's performance, it can be deployed for real-world use.
- Deployment may involve integrating the model into an application or system.

### Why Data Science Matters

- Business Insights: Organizations use data science to gain insights into customer behavior, market trends, and operational efficiency. This informs strategic decisions and drives business growth.

- Healthcare and Medicine: Data science helps analyze patient data, predict disease outbreaks, and optimize treatment plans. It contributes to personalized medicine and drug discovery.

- Finance and Risk Management: Financial institutions use data science for fraud detection, credit scoring, and risk assessment. It enhances decision-making and minimizes financial risks.

- Social Sciences and Public Policy: Data science aids in understanding social phenomena, predicting election outcomes, and optimizing public services.

- Technology and Innovation: Data science fuels innovations in artificial intelligence, natural language processing, and recommendation systems.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.iss.one/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
โค5
10 Free Machine Learning Books For 2025

๐Ÿ“˜ 1. Foundations of Machine Learning
Build a solid theoretical base before diving into machine learning algorithms.
๐Ÿ”˜ Click Here

๐Ÿ“™ 2. Practical Machine Learning: A Beginner's Guide with Ethical Insights
Learn to implement ML with a focus on responsible and ethical AI.
๐Ÿ”˜ Open Book

๐Ÿ“— 3. Mathematics for Machine Learning
Master the core math concepts that power machine learning algorithms.
๐Ÿ”˜ Click Here

๐Ÿ“• 4. Algorithms for Decision Making
Use machine learning to make smarter decisions in complex environments.
๐Ÿ”˜ Open Book

๐Ÿ“˜ 5. Learning to Quantify
Dive into the niche field of quantification and its real-world impact.
๐Ÿ”˜ Click Here

๐Ÿ“™ 6. Gradient Expectations
Explore predictive neural networks inspired by the mammalian brain.
๐Ÿ”˜ Open Book

๐Ÿ“— 7. Reinforcement Learning: An Introduction
A comprehensive intro to RL, from theory to practical applications.
๐Ÿ”˜ Click Here

๐Ÿ“• 8. Interpretable Machine Learning
Understand how to make machine learning models transparent and trustworthy.
๐Ÿ”˜ Open Book

๐Ÿ“˜ 9. Fairness and Machine Learning
Tackle bias and ensure fairness in AI and ML model outputs.
๐Ÿ”˜ Click Here

๐Ÿ“™ 10. Machine Learning in Production
Learn how to deploy ML models successfully into real-world systems.
๐Ÿ”˜ Open Book

Like for more โค๏ธ
โค5
Data Analytics project ideas to build your portfolio in 2025:

1. Sales Data Analysis Dashboard

Analyze sales trends, seasonal patterns, and product performance.

Use Power BI, Tableau, or Python (Dash/Plotly) for visualization.



2. Customer Segmentation

Use clustering (K-means, hierarchical) on customer data to identify groups.

Provide actionable marketing insights.



3. Social Media Sentiment Analysis

Analyze tweets or reviews using NLP to gauge public sentiment.

Visualize positive, negative, and neutral trends over time.



4. Churn Prediction Model

Analyze customer data to predict who might leave a service.

Use logistic regression, decision trees, or random forest.



5. Financial Data Analysis

Study stock prices, moving averages, and volatility.

Create an interactive dashboard with key metrics.



6. Healthcare Analytics

Analyze patient data for disease trends or hospital resource usage.

Use visualization to highlight key findings.



7. Website Traffic Analysis

Use Google Analytics data to identify user behavior patterns.

Suggest improvements for user engagement and conversion.



8. Employee Attrition Analysis

Analyze HR data to find factors leading to employee turnover.

Use statistical tests and visualization.


React โค๏ธ for more
โค2๐Ÿ‘1
Power BI Scenario based Questions ๐Ÿ‘‡๐Ÿ‘‡

๐Ÿ“ˆ Scenario 1:Question: Imagine you need to visualize year-over-year growth in product sales. What approach would you take to calculate and present this information effectively in Power BI?

Answer: To visualize year-over-year growth in product sales, I would first calculate the sales for each product for the current year and the previous year using DAX measures in Power BI. Then, I would create a line chart visual where the x-axis represents the months or quarters, and the y-axis represents the sales amount. I would plot two lines on the chart, one for the current year's sales and one for the previous year's sales, allowing stakeholders to easily compare the growth trends over time.

๐Ÿ”„ Scenario 2: Question: You're working with a dataset that requires extensive data cleaning and transformation before analysis. Describe your process for cleaning and preparing the data in Power BI, ensuring accuracy and efficiency.

Answer: For cleaning and preparing the dataset in Power BI, I would start by identifying and addressing missing or duplicate values, outliers, and inconsistencies in data formats. I would use Power Query Editor to perform data cleaning operations such as removing null values, renaming columns, and applying transformations like data type conversion and standardization. Additionally, I would create calculated columns or measures as needed to derive new insights from the cleaned data.

๐Ÿ”Œ Scenario 3: Question: Your organization wants to incorporate real-time data updates into their Power BI reports. How would you set up and manage live data connections in Power BI to ensure timely insights?

Answer: To incorporate real-time data updates into Power BI reports, I would utilize Power BI's streaming datasets feature. I would set up a data streaming connection to the source system, such as a database or API, and configure the dataset to receive real-time data updates at specified intervals. Then, I would design reports and visuals based on the streaming dataset, enabling stakeholders to view and analyze the latest data as it is updated in real-time.

โšก Scenario 4: Question: You've noticed that your Power BI reports are taking longer to load and refresh than usual. How would you diagnose and address performance issues to optimize report performance?

Answer: If Power BI reports are experiencing performance issues, I would first identify potential bottlenecks by analyzing factors such as data volume, query complexity, and visual design. Then, I would optimize report performance by applying techniques such as data model optimization, query optimization, and visualization best practices.
โค2๐Ÿ‘1
Essential SQL Topics for Data Analysts

SQL for Data Analysts Free Resources -> https://t.iss.one/sqlanalyst

- Basic Queries: SELECT, FROM, WHERE clauses.
- Sorting and Filtering: ORDER BY, GROUP BY, HAVING.
- Joins: INNER JOIN, LEFT JOIN, RIGHT JOIN.
- Aggregation Functions: COUNT, SUM, AVG, MIN, MAX.
- Subqueries: Embedding queries within queries.
- Data Modification: INSERT, UPDATE, DELETE.
- Indexes: Optimizing query performance.
- Normalization: Ensuring efficient database design.
- Views: Creating virtual tables for simplified queries.
- Understanding Database Relationships: One-to-One, One-to-Many, Many-to-Many.

Window functions are also important for data analysts. They allow for advanced data analysis and manipulation within specified subsets of data. Commonly used window functions include:

- ROW_NUMBER(): Assigns a unique number to each row based on a specified order.
- RANK() and DENSE_RANK(): Rank data based on a specified order, handling ties differently.
- LAG() and LEAD(): Access data from preceding or following rows within a partition.
- SUM(), AVG(), MIN(), MAX(): Aggregations over a defined window of rows.

Here is an amazing resources to learn & practice SQL: https://bit.ly/3FxxKPz

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค4