Data Science Projects
52.2K subscribers
375 photos
1 video
57 files
331 links
Perfect channel for Data Scientists

Learn Python, AI, R, Machine Learning, Data Science and many more

Admin: @love_data
Download Telegram
5 misconceptions about data analytics (and what's actually true):

The more sophisticated the tool, the better the analyst
Many analysts do their jobs with "basic" tools like Excel

You're just there to crunch the numbers
You need to be able to tell a story with the data

You need super advanced math skills
Understanding basic math and statistics is a good place to start

Data is always clean and accurate
Data is never clean and 100% accurate (without lots of prep work)

You'll work in isolation and not talk to anyone
Communication with your team and your stakeholders is essential
👍4
Don't stress too much on which tools to learn first.

Pickup 2-3 tools and master them. Skills are transferable.

For eg- If you can create an amazing dashboard in Power BI, you can make similar impressive dashboard in Tableau as well.

If you can run efficient queries in MySQL, it's going to be nearly same in PostgreSQL as well.

If you can manipulate fields in Excel, you can do the same stuff in Google Sheets as well.

Continuity is the key 😄

Never stop Learning ❤️
👍1
🔰 Data Science Roadmap for Beginners 2025
├── 📘 What is Data Science?
├── 🧠 Data Science vs Data Analytics vs Machine Learning
├── 🛠 Tools of the Trade (Python, R, Excel, SQL)
├── 🐍 Python for Data Science (NumPy, Pandas, Matplotlib)
├── 🔢 Statistics & Probability Basics
├── 📊 Data Visualization (Matplotlib, Seaborn, Plotly)
├── 🧼 Data Cleaning & Preprocessing
├── 🧮 Exploratory Data Analysis (EDA)
├── 🧠 Introduction to Machine Learning
├── 📦 Supervised vs Unsupervised Learning
├── 🤖 Popular ML Algorithms (Linear Reg, KNN, Decision Trees)
├── 🧪 Model Evaluation (Accuracy, Precision, Recall, F1 Score)
├── 🧰 Model Tuning (Cross Validation, Grid Search)
├── ⚙️ Feature Engineering
├── 🏗 Real-world Projects (Kaggle, UCI Datasets)
├── 📈 Basic Deployment (Streamlit, Flask, Heroku)
├── 🔁 Continuous Learning: Blogs, Research Papers, Competitions

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like for more ❤️
👍2
To start with Machine Learning:

   1. Learn Python
   2. Practice using Google Colab
   

Take these free courses:

https://t.iss.one/datasciencefun/290

If you need a bit more time before diving deeper, finish the Kaggle tutorials.

At this point, you are ready to finish your first project: The Titanic Challenge on Kaggle.

If Math is not your strong suit, don't worry. I don't recommend you spend too much time learning Math before writing code. Instead, learn the concepts on-demand: Find what you need when needed.

From here, take the Machine Learning specialization in Coursera. It's more advanced, and it will stretch you out a bit.

The top universities worldwide have published their Machine Learning and Deep Learning classes online. Here are some of them:

https://t.iss.one/datasciencefree/259

Many different books will help you. The attached image will give you an idea of my favorite ones.

Finally, keep these three ideas in mind:

1. Start by working on solved problems so you can find help whenever you get stuck.
2. ChatGPT will help you make progress. Use it to summarize complex concepts and generate questions you can answer to practice.
3. Find a community on LinkedIn or 𝕏 and share your work. Ask questions, and help others.

During this time, you'll deal with a lot. Sometimes, you will feel it's impossible to keep up with everything happening, and you'll be right.

Here is the good news:

Most people understand a tiny fraction of the world of Machine Learning. You don't need more to build a fantastic career in space.

Focus on finding your path, and Write. More. Code.

That's how you win.✌️✌️
👍5
🔥 Data Science Roadmap 2025

Step 1: 🐍 Python Basics
Step 2: 📊 Data Analysis (Pandas, NumPy)
Step 3: 📈 Data Visualization (Matplotlib, Seaborn)
Step 4: 🤖 Machine Learning (Scikit-learn)
Step 5: � Deep Learning (TensorFlow/PyTorch)
Step 6: 🗃️ SQL & Big Data (Spark)
Step 7: 🚀 Deploy Models (Flask, FastAPI)
Step 8: 📢 Showcase Projects
Step 9: 💼 Land a Job!

🔓 Pro Tip: Compete on Kaggle

#datascience
👍5
Python Important Star Patterns.
2
Let's now understand Data Science Roadmap in detail:

1. Math & Statistics (Foundation Layer)
This is the backbone of data science. Strong intuition here helps with algorithms, ML, and interpreting results.

Key Topics:

Linear Algebra: Vectors, matrices, matrix operations

Calculus: Derivatives, gradients (for optimization)

Probability: Bayes theorem, probability distributions

Statistics: Mean, median, mode, standard deviation, hypothesis testing, confidence intervals

Inferential Statistics: p-values, t-tests, ANOVA


Resources:

Khan Academy (Math & Stats)

"Think Stats" book

YouTube (StatQuest with Josh Starmer)


2. Python or R (Pick One for Analysis)
These are your main tools. Python is more popular in industry; R is strong in academia.

For Python Learn:

Variables, loops, functions, list comprehension

Libraries: NumPy, Pandas, Matplotlib, Seaborn


For R Learn:

Vectors, data frames, ggplot2, dplyr, tidyr


Goal: Be comfortable working with data, writing clean code, and doing basic analysis.

3. Data Wrangling (Data Cleaning & Manipulation)
Real-world data is messy. Cleaning and structuring it is essential.

What to Learn:

Handling missing values

Removing duplicates

String operations

Date and time operations

Merging and joining datasets

Reshaping data (pivot, melt)


Tools:

Python: Pandas

R: dplyr, tidyr


Mini Projects: Clean a messy CSV or scrape and structure web data.

4. Data Visualization (Telling the Story)
This is about showing insights visually for business users or stakeholders.

In Python:

Matplotlib, Seaborn, Plotly


In R:

ggplot2, plotly


Learn To:

Create bar plots, histograms, scatter plots, box plots

Design dashboards (can explore Power BI or Tableau)

Use color and layout to enhance clarity


5. Machine Learning (ML)
Now the real fun begins! Automate predictions and classifications.

Topics:

Supervised Learning: Linear Regression, Logistic Regression, Decision Trees, Random Forests, SVM

Unsupervised Learning: Clustering (K-means), PCA

Model Evaluation: Accuracy, Precision, Recall, F1-score, ROC-AUC

Cross-validation, Hyperparameter tuning


Libraries:

scikit-learn, xgboost


Practice On:

Kaggle datasets, Titanic survival, House price prediction


6. Deep Learning & NLP (Advanced Level)
Push your skills to the next level. Essential for AI, image, and text-based tasks.

Deep Learning:

Neural Networks, CNNs, RNNs

Frameworks: TensorFlow, Keras, PyTorch


NLP (Natural Language Processing):

Text preprocessing (tokenization, stemming, lemmatization)

TF-IDF, Word Embeddings

Sentiment Analysis, Topic Modeling

Transformers (BERT, GPT, etc.)


Projects:

Sentiment analysis from Twitter data

Image classifier using CNN


7. Projects (Build Your Portfolio)
Apply everything you've learned to real-world datasets.

Types of Projects:

EDA + ML project on a domain (finance, health, sports)

End-to-end ML pipeline

Deep Learning project (image or text)

Build a dashboard with your insights

Collaborate on GitHub, contribute to open-source


Tips:

Host projects on GitHub

Write about them on Medium, LinkedIn, or personal blog


8. Apply for Jobs (You're Ready!)
Now, you're prepared to apply with confidence.

Steps:

Prepare your resume tailored for DS roles

Sharpen interview skills (SQL, Python, case studies)

Practice on LeetCode, InterviewBit

Network on LinkedIn, attend meetups

Apply for internships or entry-level DS/DA roles


Keep learning and adapting. Data Science is vast and fast-moving—stay updated via newsletters, GitHub, and communities like Kaggle or Reddit.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y

Like if you need similar content 😄👍

Hope this helps you 😊
2👍1
What's the ONE skill you absolutely NEED to master in 2025 to stay ahead of the curve?

🤔 The latest video dives deep into the MOST in-demand skill this year.

Watch Now: https://youtu.be/GuQHC2_pPxc?feature=shared

And trust me, you won't want to miss this!

Register Now: https://surl.li/bbkbvd
1👍1
Some essential concepts every data scientist should understand:

### 1. Statistics and Probability
- Purpose: Understanding data distributions and making inferences.
- Core Concepts: Descriptive statistics (mean, median, mode), inferential statistics, probability distributions (normal, binomial), hypothesis testing, p-values, confidence intervals.

### 2. Programming Languages
- Purpose: Implementing data analysis and machine learning algorithms.
- Popular Languages: Python, R.
- Libraries: NumPy, Pandas, Scikit-learn (Python), dplyr, ggplot2 (R).

### 3. Data Wrangling
- Purpose: Cleaning and transforming raw data into a usable format.
- Techniques: Handling missing values, data normalization, feature engineering, data aggregation.

### 4. Exploratory Data Analysis (EDA)
- Purpose: Summarizing the main characteristics of a dataset, often using visual methods.
- Tools: Matplotlib, Seaborn (Python), ggplot2 (R).
- Techniques: Histograms, scatter plots, box plots, correlation matrices.

### 5. Machine Learning
- Purpose: Building models to make predictions or find patterns in data.
- Core Concepts: Supervised learning (regression, classification), unsupervised learning (clustering, dimensionality reduction), model evaluation (accuracy, precision, recall, F1 score).
- Algorithms: Linear regression, logistic regression, decision trees, random forests, support vector machines, k-means clustering, principal component analysis (PCA).

### 6. Deep Learning
- Purpose: Advanced machine learning techniques using neural networks.
- Core Concepts: Neural networks, backpropagation, activation functions, overfitting, dropout.
- Frameworks: TensorFlow, Keras, PyTorch.

### 7. Natural Language Processing (NLP)
- Purpose: Analyzing and modeling textual data.
- Core Concepts: Tokenization, stemming, lemmatization, TF-IDF, word embeddings.
- Techniques: Sentiment analysis, topic modeling, named entity recognition (NER).

### 8. Data Visualization
- Purpose: Communicating insights through graphical representations.
- Tools: Matplotlib, Seaborn, Plotly (Python), ggplot2, Shiny (R), Tableau.
- Techniques: Bar charts, line graphs, heatmaps, interactive dashboards.

### 9. Big Data Technologies
- Purpose: Handling and analyzing large volumes of data.
- Technologies: Hadoop, Spark.
- Core Concepts: Distributed computing, MapReduce, parallel processing.

### 10. Databases
- Purpose: Storing and retrieving data efficiently.
- Types: SQL databases (MySQL, PostgreSQL), NoSQL databases (MongoDB, Cassandra).
- Core Concepts: Querying, indexing, normalization, transactions.

### 11. Time Series Analysis
- Purpose: Analyzing data points collected or recorded at specific time intervals.
- Core Concepts: Trend analysis, seasonal decomposition, ARIMA models, exponential smoothing.

### 12. Model Deployment and Productionization
- Purpose: Integrating machine learning models into production environments.
- Techniques: API development, containerization (Docker), model serving (Flask, FastAPI).
- Tools: MLflow, TensorFlow Serving, Kubernetes.

### 13. Data Ethics and Privacy
- Purpose: Ensuring ethical use and privacy of data.
- Core Concepts: Bias in data, ethical considerations, data anonymization, GDPR compliance.

### 14. Business Acumen
- Purpose: Aligning data science projects with business goals.
- Core Concepts: Understanding key performance indicators (KPIs), domain knowledge, stakeholder communication.

### 15. Collaboration and Version Control
- Purpose: Managing code changes and collaborative work.
- Tools: Git, GitHub, GitLab.
- Practices: Version control, code reviews, collaborative development.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING 👍👍
👍1🔥1👀1
Data Analyst vs Data Scientist: Must-Know Differences

Data Analyst:
- Role: Primarily focuses on interpreting data, identifying trends, and creating reports that inform business decisions.
- Best For: Individuals who enjoy working with existing data to uncover insights and support decision-making in business processes.
- Key Responsibilities:
- Collecting, cleaning, and organizing data from various sources.
- Performing descriptive analytics to summarize the data (trends, patterns, anomalies).
- Creating reports and dashboards using tools like Excel, SQL, Power BI, and Tableau.
- Collaborating with business stakeholders to provide data-driven insights and recommendations.
- Skills Required:
- Proficiency in data visualization tools (e.g., Power BI, Tableau).
- Strong analytical and statistical skills, along with expertise in SQL and Excel.
- Familiarity with business intelligence and basic programming (optional).
- Outcome: Data analysts provide actionable insights to help companies make informed decisions by analyzing and visualizing data, often focusing on current and historical trends.

Data Scientist:
- Role: Combines statistical methods, machine learning, and programming to build predictive models and derive deeper insights from data.
- Best For: Individuals who enjoy working with complex datasets, developing algorithms, and using advanced analytics to solve business problems.
- Key Responsibilities:
- Designing and developing machine learning models for predictive analytics.
- Collecting, processing, and analyzing large datasets (structured and unstructured).
- Using statistical methods, algorithms, and data mining to uncover hidden patterns.
- Writing and maintaining code in programming languages like Python, R, and SQL.
- Working with big data technologies and cloud platforms for scalable solutions.
- Skills Required:
- Proficiency in programming languages like Python, R, and SQL.
- Strong understanding of machine learning algorithms, statistics, and data modeling.
- Experience with big data tools (e.g., Hadoop, Spark) and cloud platforms (AWS, Azure).
- Outcome: Data scientists develop models that predict future outcomes and drive innovation through advanced analytics, going beyond what has happened to explain why it happened and what will happen next.

Data analysts focus on analyzing and visualizing existing data to provide insights for current business challenges, while data scientists apply advanced algorithms and machine learning to predict future outcomes and derive deeper insights. Data scientists typically handle more complex problems and require a stronger background in statistics, programming, and machine learning.

I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://t.iss.one/DataSimplifier

Like this post for more content like this 👍♥️

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
👍42
When preparing for an SQL project-based interview, the focus typically shifts from theoretical knowledge to practical application. Here are some SQL project-based interview questions that could help assess your problem-solving skills and experience:

1. Database Design and Schema
- Question: Describe a database schema you have designed in a past project. What were the key entities, and how did you establish relationships between them?
- Follow-Up: How did you handle normalization? Did you denormalize any tables for performance reasons?

2. Data Modeling
- Question: How would you model a database for an e-commerce application? What tables would you include, and how would they relate to each other?
- Follow-Up: How would you design the schema to handle scenarios like discount codes, product reviews, and inventory management?

3. Query Optimization
- Question: Can you discuss a time when you optimized an SQL query? What was the original query, and what changes did you make to improve its performance?
- Follow-Up: What tools or techniques did you use to identify and resolve the performance issues?

4. ETL Processes
- Question: Describe an ETL (Extract, Transform, Load) process you have implemented. How did you handle data extraction, transformation, and loading?
- Follow-Up: How did you ensure data quality and consistency during the ETL process?

5. Handling Large Datasets
- Question: In a project where you dealt with large datasets, how did you manage performance and storage issues?
- Follow-Up: What indexing strategies or partitioning techniques did you use?

6. Joins and Subqueries
- Question: Provide an example of a complex query you wrote involving multiple joins and subqueries. What was the business problem you were solving?
- Follow-Up: How did you ensure that the query performed efficiently?

7. Stored Procedures and Functions
- Question: Have you created stored procedures or functions in any of your projects? Can you describe one and explain why you chose to encapsulate the logic in a stored procedure?
- Follow-Up: How did you handle error handling and logging within the stored procedure?

8. Data Integrity and Constraints
- Question: How did you enforce data integrity in your SQL projects? Can you give examples of constraints (e.g., primary keys, foreign keys, unique constraints) you implemented?
- Follow-Up: How did you handle situations where constraints needed to be temporarily disabled or modified?

9. Version Control and Collaboration
- Question: How did you manage database version control in your projects? What tools or practices did you use to ensure collaboration with other developers?
- Follow-Up: How did you handle conflicts or issues arising from multiple developers working on the same database?

10. Data Migration
- Question: Describe a data migration project you worked on. How did you ensure that the migration was successful, and what steps did you take to handle data inconsistencies or errors?
- Follow-Up: How did you test the migration process before moving to the production environment?

11. Security and Permissions
- Question: In your SQL projects, how did you manage database security?
- Follow-Up: How did you handle encryption or sensitive data within the database?

12. Handling Unstructured Data
- Question: Have you worked with unstructured or semi-structured data in an SQL environment?
- Follow-Up: What challenges did you face, and how did you overcome them?

13. Real-Time Data Processing
   - Question: Can you describe a project where you handled real-time data processing using SQL? What were the key challenges, and how did you address them?
   - Follow-Up: How did you ensure the performance and reliability of the real-time data processing system?

Be prepared to discuss specific examples from your past work and explain your thought process in detail.

Here you can find SQL Interview Resources👇
https://t.iss.one/DataSimplifier

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
1