Here are some project ideas for a data science and machine learning project focused on generating AI:
1. Natural Language Generation (NLG) Model: Build a model that generates human-like text based on input data. This could be used for creating product descriptions, news articles, or personalized recommendations.
2. Code Generation Model: Develop a model that generates code snippets based on a given task or problem statement. This could help automate software development tasks or assist programmers in writing code more efficiently.
3. Image Captioning Model: Create a model that generates captions for images, describing the content of the image in natural language. This could be useful for visually impaired individuals or for enhancing image search capabilities.
4. Music Generation Model: Build a model that generates music compositions based on input data, such as existing songs or musical patterns. This could be used for creating background music for videos or games.
5. Video Synthesis Model: Develop a model that generates realistic video sequences based on input data, such as a series of images or a textual description. This could be used for generating synthetic training data for computer vision models.
6. Chatbot Generation Model: Create a model that generates conversational agents or chatbots based on input data, such as dialogue datasets or user interactions. This could be used for customer service automation or virtual assistants.
7. Art Generation Model: Build a model that generates artistic images or paintings based on input data, such as art styles, color palettes, or themes. This could be used for creating unique digital artwork or personalized designs.
8. Story Generation Model: Develop a model that generates fictional stories or narratives based on input data, such as plot outlines, character descriptions, or genre preferences. This could be used for creative writing prompts or interactive storytelling applications.
9. Recipe Generation Model: Create a model that generates new recipes based on input data, such as ingredient lists, dietary restrictions, or cuisine preferences. This could be used for meal planning or culinary inspiration.
10. Financial Report Generation Model: Build a model that generates financial reports or summaries based on input data, such as company financial statements, market trends, or investment portfolios. This could be used for automated financial analysis or decision-making support.
Any project which sounds interesting to you?
1. Natural Language Generation (NLG) Model: Build a model that generates human-like text based on input data. This could be used for creating product descriptions, news articles, or personalized recommendations.
2. Code Generation Model: Develop a model that generates code snippets based on a given task or problem statement. This could help automate software development tasks or assist programmers in writing code more efficiently.
3. Image Captioning Model: Create a model that generates captions for images, describing the content of the image in natural language. This could be useful for visually impaired individuals or for enhancing image search capabilities.
4. Music Generation Model: Build a model that generates music compositions based on input data, such as existing songs or musical patterns. This could be used for creating background music for videos or games.
5. Video Synthesis Model: Develop a model that generates realistic video sequences based on input data, such as a series of images or a textual description. This could be used for generating synthetic training data for computer vision models.
6. Chatbot Generation Model: Create a model that generates conversational agents or chatbots based on input data, such as dialogue datasets or user interactions. This could be used for customer service automation or virtual assistants.
7. Art Generation Model: Build a model that generates artistic images or paintings based on input data, such as art styles, color palettes, or themes. This could be used for creating unique digital artwork or personalized designs.
8. Story Generation Model: Develop a model that generates fictional stories or narratives based on input data, such as plot outlines, character descriptions, or genre preferences. This could be used for creative writing prompts or interactive storytelling applications.
9. Recipe Generation Model: Create a model that generates new recipes based on input data, such as ingredient lists, dietary restrictions, or cuisine preferences. This could be used for meal planning or culinary inspiration.
10. Financial Report Generation Model: Build a model that generates financial reports or summaries based on input data, such as company financial statements, market trends, or investment portfolios. This could be used for automated financial analysis or decision-making support.
Any project which sounds interesting to you?
๐3โค1
Some useful PYTHON libraries for data science
NumPy stands for Numerical Python. The most powerful feature of NumPy is n-dimensional array. This library also contains basic linear algebra functions, Fourier transforms, advanced random number capabilities and tools for integration with other low level languages like Fortran, C and C++
SciPy stands for Scientific Python. SciPy is built on NumPy. It is one of the most useful library for variety of high level science and engineering modules like discrete Fourier transform, Linear Algebra, Optimization and Sparse matrices.
Matplotlib for plotting vast variety of graphs, starting from histograms to line plots to heat plots.. You can use Pylab feature in ipython notebook (ipython notebook โpylab = inline) to use these plotting features inline. If you ignore the inline option, then pylab converts ipython environment to an environment, very similar to Matlab. You can also use Latex commands to add math to your plot.
Pandas for structured data operations and manipulations. It is extensively used for data munging and preparation. Pandas were added relatively recently to Python and have been instrumental in boosting Pythonโs usage in data scientist community.
Scikit Learn for machine learning. Built on NumPy, SciPy and matplotlib, this library contains a lot of efficient tools for machine learning and statistical modeling including classification, regression, clustering and dimensionality reduction.
Statsmodels for statistical modeling. Statsmodels is a Python module that allows users to explore data, estimate statistical models, and perform statistical tests. An extensive list of descriptive statistics, statistical tests, plotting functions, and result statistics are available for different types of data and each estimator.
Seaborn for statistical data visualization. Seaborn is a library for making attractive and informative statistical graphics in Python. It is based on matplotlib. Seaborn aims to make visualization a central part of exploring and understanding data.
Bokeh for creating interactive plots, dashboards and data applications on modern web-browsers. It empowers the user to generate elegant and concise graphics in the style of D3.js. Moreover, it has the capability of high-performance interactivity over very large or streaming datasets.
Blaze for extending the capability of Numpy and Pandas to distributed and streaming datasets. It can be used to access data from a multitude of sources including Bcolz, MongoDB, SQLAlchemy, Apache Spark, PyTables, etc. Together with Bokeh, Blaze can act as a very powerful tool for creating effective visualizations and dashboards on huge chunks of data.
Scrapy for web crawling. It is a very useful framework for getting specific patterns of data. It has the capability to start at a website home url and then dig through web-pages within the website to gather information.
SymPy for symbolic computation. It has wide-ranging capabilities from basic symbolic arithmetic to calculus, algebra, discrete mathematics and quantum physics. Another useful feature is the capability of formatting the result of the computations as LaTeX code.
Requests for accessing the web. It works similar to the the standard python library urllib2 but is much easier to code. You will find subtle differences with urllib2 but for beginners, Requests might be more convenient.
Additional libraries, you might need:
os for Operating system and file operations
networkx and igraph for graph based data manipulations
regular expressions for finding patterns in text data
BeautifulSoup for scrapping web. It is inferior to Scrapy as it will extract information from just a single webpage in a run.
NumPy stands for Numerical Python. The most powerful feature of NumPy is n-dimensional array. This library also contains basic linear algebra functions, Fourier transforms, advanced random number capabilities and tools for integration with other low level languages like Fortran, C and C++
SciPy stands for Scientific Python. SciPy is built on NumPy. It is one of the most useful library for variety of high level science and engineering modules like discrete Fourier transform, Linear Algebra, Optimization and Sparse matrices.
Matplotlib for plotting vast variety of graphs, starting from histograms to line plots to heat plots.. You can use Pylab feature in ipython notebook (ipython notebook โpylab = inline) to use these plotting features inline. If you ignore the inline option, then pylab converts ipython environment to an environment, very similar to Matlab. You can also use Latex commands to add math to your plot.
Pandas for structured data operations and manipulations. It is extensively used for data munging and preparation. Pandas were added relatively recently to Python and have been instrumental in boosting Pythonโs usage in data scientist community.
Scikit Learn for machine learning. Built on NumPy, SciPy and matplotlib, this library contains a lot of efficient tools for machine learning and statistical modeling including classification, regression, clustering and dimensionality reduction.
Statsmodels for statistical modeling. Statsmodels is a Python module that allows users to explore data, estimate statistical models, and perform statistical tests. An extensive list of descriptive statistics, statistical tests, plotting functions, and result statistics are available for different types of data and each estimator.
Seaborn for statistical data visualization. Seaborn is a library for making attractive and informative statistical graphics in Python. It is based on matplotlib. Seaborn aims to make visualization a central part of exploring and understanding data.
Bokeh for creating interactive plots, dashboards and data applications on modern web-browsers. It empowers the user to generate elegant and concise graphics in the style of D3.js. Moreover, it has the capability of high-performance interactivity over very large or streaming datasets.
Blaze for extending the capability of Numpy and Pandas to distributed and streaming datasets. It can be used to access data from a multitude of sources including Bcolz, MongoDB, SQLAlchemy, Apache Spark, PyTables, etc. Together with Bokeh, Blaze can act as a very powerful tool for creating effective visualizations and dashboards on huge chunks of data.
Scrapy for web crawling. It is a very useful framework for getting specific patterns of data. It has the capability to start at a website home url and then dig through web-pages within the website to gather information.
SymPy for symbolic computation. It has wide-ranging capabilities from basic symbolic arithmetic to calculus, algebra, discrete mathematics and quantum physics. Another useful feature is the capability of formatting the result of the computations as LaTeX code.
Requests for accessing the web. It works similar to the the standard python library urllib2 but is much easier to code. You will find subtle differences with urllib2 but for beginners, Requests might be more convenient.
Additional libraries, you might need:
os for Operating system and file operations
networkx and igraph for graph based data manipulations
regular expressions for finding patterns in text data
BeautifulSoup for scrapping web. It is inferior to Scrapy as it will extract information from just a single webpage in a run.
โค2๐2
๐ฅ Website To Learn Programming & Data Analytics
1. Learn HTML :- html.com
2. Learn CSS :- css-tricks.com
3. Learn Tailwind CSS :- tailwindcss.com
4. Learn JavaScript :- imp.i115008.net/mgGagX
5. Learn Bootstrap :- getbootstrap.com
6. Learn DSA :- t.iss.one/dsabooks
7. Learn Git :- git-scm.com
8. Learn React :- react-tutorial.app
9. Learn API :- rapidapi.com/learn
10. Learn Python :- t.iss.one/pythondevelopersindia
11. Learn SQL :- t.iss.one/sqlspecialist
12. Learn Web3 :- learnweb3.io
13. Learn JQuery :- learn.jquery.com
14. Learn ExpressJS :- expressjs.com
15. Learn NodeJS :- nodejs.dev/learn
16. Learn MongoDB :- learn.mongodb.com
17. Learn PHP :- phptherightway.com/
18. Learn Golang :- learn-golang.org/
19. Learn Power BI :- t.iss.one/powerbi_analyst
20. Learn Data Analytics:- datasimplifier.com
21. Learn Excel:- https://t.iss.one/excel_data
Join for more free resources: https://t.iss.one/free4unow_backup
ENJOY LEARNING ๐๐
1. Learn HTML :- html.com
2. Learn CSS :- css-tricks.com
3. Learn Tailwind CSS :- tailwindcss.com
4. Learn JavaScript :- imp.i115008.net/mgGagX
5. Learn Bootstrap :- getbootstrap.com
6. Learn DSA :- t.iss.one/dsabooks
7. Learn Git :- git-scm.com
8. Learn React :- react-tutorial.app
9. Learn API :- rapidapi.com/learn
10. Learn Python :- t.iss.one/pythondevelopersindia
11. Learn SQL :- t.iss.one/sqlspecialist
12. Learn Web3 :- learnweb3.io
13. Learn JQuery :- learn.jquery.com
14. Learn ExpressJS :- expressjs.com
15. Learn NodeJS :- nodejs.dev/learn
16. Learn MongoDB :- learn.mongodb.com
17. Learn PHP :- phptherightway.com/
18. Learn Golang :- learn-golang.org/
19. Learn Power BI :- t.iss.one/powerbi_analyst
20. Learn Data Analytics:- datasimplifier.com
21. Learn Excel:- https://t.iss.one/excel_data
Join for more free resources: https://t.iss.one/free4unow_backup
ENJOY LEARNING ๐๐
๐4โค1
9 secrets about Data Storytelling every analyst should know (number 6 is a must):
1/ Start with the end in mindโwhatโs the key takeaway?
2/ Donโt just present numbersโexplain the 'so what' behind them.
3/ Data should drive decisionsโframe your analysis as a solution to a problem.
#DataAnalytics
1/ Start with the end in mindโwhatโs the key takeaway?
2/ Donโt just present numbersโexplain the 'so what' behind them.
3/ Data should drive decisionsโframe your analysis as a solution to a problem.
#DataAnalytics
โค2
4/ Visualise trends over time to tell a story.
5/ Add context to your dataโit makes your insights relevant.
6/ Speak the language of your audienceโsimplify complex terms.
5/ Add context to your dataโit makes your insights relevant.
6/ Speak the language of your audienceโsimplify complex terms.
7/ Use metaphors or analogies to explain difficult concepts. Don't use professional jargon.
8/ Include both the big picture and the detailsโit appeals to different stakeholders.
9/ Conclude with a call to actionโwhat should they do next?
8/ Include both the big picture and the detailsโit appeals to different stakeholders.
9/ Conclude with a call to actionโwhat should they do next?
How Data Analytics Helps to Grow Business to Best
Analytics are the analysis of raw data to draw meaningful insights from it. In other words, applying algorithms, statistical models, or even machine learning on large volumes of data will seek to discover patterns, trends, and correlations. In this way, the bottom line is to support businesses in making much more informed, data-driven decisions.
In simple words, think about running a retail store. Youโve got years of sales data, customer feedback, and inventory reports. However, do you know which are the best-sellers or where youโre losing money? By applying data analytics, you would find out some hidden opportunities, adjust your strategies, and improve your business outcome accordingly.
read more......
Analytics are the analysis of raw data to draw meaningful insights from it. In other words, applying algorithms, statistical models, or even machine learning on large volumes of data will seek to discover patterns, trends, and correlations. In this way, the bottom line is to support businesses in making much more informed, data-driven decisions.
In simple words, think about running a retail store. Youโve got years of sales data, customer feedback, and inventory reports. However, do you know which are the best-sellers or where youโre losing money? By applying data analytics, you would find out some hidden opportunities, adjust your strategies, and improve your business outcome accordingly.
read more......
๐1
Here are some of the most popular python project ideas: ๐ก
Simple Calculator
Text-Based Adventure Game
Number Guessing Game
Password Generator
Dice Rolling Simulator
Mad Libs Generator
Currency Converter
Leap Year Checker
Word Counter
Quiz Program
Email Slicer
Rock-Paper-Scissors Game
Web Scraper (Simple)
Text Analyzer
Interest Calculator
Unit Converter
Simple Drawing Program
File Organizer
BMI Calculator
Tic-Tac-Toe Game
To-Do List Application
Inspirational Quote Generator
Task Automation Script
Simple Weather App
Automate data cleaning and analysis (EDA)
Sales analysis
Sentiment analysis
Price prediction
Customer Segmentation
Time series forecasting
Image classification
Spam email detection
Credit card fraud detection
Market basket analysis
NLP, etc
These are just starting points. Feel free to explore, combine ideas, and personalize your projects based on your interest and skills. ๐ฏ
Simple Calculator
Text-Based Adventure Game
Number Guessing Game
Password Generator
Dice Rolling Simulator
Mad Libs Generator
Currency Converter
Leap Year Checker
Word Counter
Quiz Program
Email Slicer
Rock-Paper-Scissors Game
Web Scraper (Simple)
Text Analyzer
Interest Calculator
Unit Converter
Simple Drawing Program
File Organizer
BMI Calculator
Tic-Tac-Toe Game
To-Do List Application
Inspirational Quote Generator
Task Automation Script
Simple Weather App
Automate data cleaning and analysis (EDA)
Sales analysis
Sentiment analysis
Price prediction
Customer Segmentation
Time series forecasting
Image classification
Spam email detection
Credit card fraud detection
Market basket analysis
NLP, etc
These are just starting points. Feel free to explore, combine ideas, and personalize your projects based on your interest and skills. ๐ฏ
โค4๐1
Free Session to learn Data Analytics, Data Science & AI
๐๐
https://tracking.acciojob.com/g/PUfdDxgHR
Register fast, only for first few users
๐๐
https://tracking.acciojob.com/g/PUfdDxgHR
Register fast, only for first few users
๐2
๐ What is Python Data Structures?
You can think of a data structure as a way of organizing and storing data such that we can access and modify it efficiently.
We have primitive data types like integers, floats, Booleans, and strings.
๐ What is Python List?
A list in Python is a heterogeneous container for items. This would remind you of an array in C++, but since Python does not support arrays, we have Python Lists.
๐ Python Tuple
This Python Data Structure is like a, like a list in Python, is a heterogeneous container for items.
But the major difference between the two (tuple and list) is that a list is mutable, but a tuple is immutable.
This means that while you can reassign or delete an entire tuple, you cannot do the same to a single item or a slice.
๐ Python Dictionaries
Finally, we will take a look at Python dictionaries. Think of a real-life dictionary. What is it used for? It holds word-meaning pairs. Likewise, a Python dictionary holds key-value pairs. However, you may not use an unhashable item as a key.
To declare a Python dictionary, we use curly braces. But since it has key-value pairs instead of single values, this differentiates a dictionary from a set.
You can think of a data structure as a way of organizing and storing data such that we can access and modify it efficiently.
We have primitive data types like integers, floats, Booleans, and strings.
๐ What is Python List?
A list in Python is a heterogeneous container for items. This would remind you of an array in C++, but since Python does not support arrays, we have Python Lists.
๐ Python Tuple
This Python Data Structure is like a, like a list in Python, is a heterogeneous container for items.
But the major difference between the two (tuple and list) is that a list is mutable, but a tuple is immutable.
This means that while you can reassign or delete an entire tuple, you cannot do the same to a single item or a slice.
๐ Python Dictionaries
Finally, we will take a look at Python dictionaries. Think of a real-life dictionary. What is it used for? It holds word-meaning pairs. Likewise, a Python dictionary holds key-value pairs. However, you may not use an unhashable item as a key.
To declare a Python dictionary, we use curly braces. But since it has key-value pairs instead of single values, this differentiates a dictionary from a set.
๐5
Top 10 Computer Vision Project Ideas
1. Edge Detection
2. Photo Sketching
3. Detecting Contours
4. Collage Mosaic Generator
5. Barcode and QR Code Scanner
6. Face Detection
7. Blur the Face
8. Image Segmentation
9. Human Counting with OpenCV
10. Colour Detection
1. Edge Detection
2. Photo Sketching
3. Detecting Contours
4. Collage Mosaic Generator
5. Barcode and QR Code Scanner
6. Face Detection
7. Blur the Face
8. Image Segmentation
9. Human Counting with OpenCV
10. Colour Detection
๐4
โ๏ธ๐A beginner's roadmap for learning SQL:
๐บUnderstand Basics:
Learn what SQL is and its purpose in managing relational databases.
Understand basic database concepts like tables, rows, columns, and relationships.
๐บLearn SQL Syntax:
Familiarize yourself with SQL syntax for common commands like SELECT, INSERT, UPDATE, DELETE.
Understand clauses like WHERE, ORDER BY, GROUP BY, and JOIN.
๐บSetup a Database:
Install a relational database management system (RDBMS) like MySQL, SQLite, or PostgreSQL.
Practice creating databases, tables, and inserting data.
๐บRetrieve Data (SELECT):
Learn to retrieve data from a database using SELECT statements.
Practice filtering data using WHERE clause and sorting using ORDER BY.
๐บModify Data (INSERT, UPDATE, DELETE):
Understand how to insert new records, update existing ones, and delete data.
Be cautious with DELETE to avoid unintentional data loss.
๐บWorking with Functions:
Explore SQL functions like COUNT, AVG, SUM, MAX, MIN for data analysis.
Understand string functions, date functions, and mathematical functions.
๐บData Filtering and Sorting:
Learn advanced filtering techniques using AND, OR, and IN operators.
Practice sorting data using multiple columns.
๐บTable Relationships (JOIN):
Understand the concept of joining tables to retrieve data from multiple tables.
Learn about INNER JOIN, LEFT JOIN, RIGHT JOIN, and FULL JOIN.
๐บGrouping and Aggregation:
Explore GROUP BY clause to group data based on specific columns.
Understand aggregate functions for summarizing data (SUM, AVG, COUNT).
๐บSubqueries:
Learn to use subqueries to perform complex queries.
Understand how to use subqueries in SELECT, WHERE, and FROM clauses.
๐บIndexes and Optimization:
Gain knowledge about indexes and their role in optimizing queries.
Understand how to optimize SQL queries for better performance.
๐บTransactions and ACID Properties:
Learn about transactions and the ACID properties (Atomicity, Consistency, Isolation, Durability).
Understand how to use transactions to maintain data integrity.
๐บNormalization:
Understand the basics of database normalization to design efficient databases.
Learn about 1NF, 2NF, 3NF, and BCNF.
๐บBackup and Recovery:
Understand the importance of database backups.
Learn how to perform backups and recovery operations.
๐บPractice and Projects:
Apply your knowledge through hands-on projects.
Practice on platforms like LeetCode, HackerRank, or build your own small database-driven projects.
๐๐Remember to practice regularly and build real-world projects to reinforce your learning.
Happy Learning ๐ฅณ ๐
๐บUnderstand Basics:
Learn what SQL is and its purpose in managing relational databases.
Understand basic database concepts like tables, rows, columns, and relationships.
๐บLearn SQL Syntax:
Familiarize yourself with SQL syntax for common commands like SELECT, INSERT, UPDATE, DELETE.
Understand clauses like WHERE, ORDER BY, GROUP BY, and JOIN.
๐บSetup a Database:
Install a relational database management system (RDBMS) like MySQL, SQLite, or PostgreSQL.
Practice creating databases, tables, and inserting data.
๐บRetrieve Data (SELECT):
Learn to retrieve data from a database using SELECT statements.
Practice filtering data using WHERE clause and sorting using ORDER BY.
๐บModify Data (INSERT, UPDATE, DELETE):
Understand how to insert new records, update existing ones, and delete data.
Be cautious with DELETE to avoid unintentional data loss.
๐บWorking with Functions:
Explore SQL functions like COUNT, AVG, SUM, MAX, MIN for data analysis.
Understand string functions, date functions, and mathematical functions.
๐บData Filtering and Sorting:
Learn advanced filtering techniques using AND, OR, and IN operators.
Practice sorting data using multiple columns.
๐บTable Relationships (JOIN):
Understand the concept of joining tables to retrieve data from multiple tables.
Learn about INNER JOIN, LEFT JOIN, RIGHT JOIN, and FULL JOIN.
๐บGrouping and Aggregation:
Explore GROUP BY clause to group data based on specific columns.
Understand aggregate functions for summarizing data (SUM, AVG, COUNT).
๐บSubqueries:
Learn to use subqueries to perform complex queries.
Understand how to use subqueries in SELECT, WHERE, and FROM clauses.
๐บIndexes and Optimization:
Gain knowledge about indexes and their role in optimizing queries.
Understand how to optimize SQL queries for better performance.
๐บTransactions and ACID Properties:
Learn about transactions and the ACID properties (Atomicity, Consistency, Isolation, Durability).
Understand how to use transactions to maintain data integrity.
๐บNormalization:
Understand the basics of database normalization to design efficient databases.
Learn about 1NF, 2NF, 3NF, and BCNF.
๐บBackup and Recovery:
Understand the importance of database backups.
Learn how to perform backups and recovery operations.
๐บPractice and Projects:
Apply your knowledge through hands-on projects.
Practice on platforms like LeetCode, HackerRank, or build your own small database-driven projects.
๐๐Remember to practice regularly and build real-world projects to reinforce your learning.
Happy Learning ๐ฅณ ๐
โค2๐2
SQL data cleaning methods you should know for Data Science:
1. Identifying Missing Data
2. Removing Duplicate Records
3. Handling Missing Data
4. Standardizing Data
5. Correcting Data Entry Errors
1. Identifying Missing Data
2. Removing Duplicate Records
3. Handling Missing Data
4. Standardizing Data
5. Correcting Data Entry Errors
๐2
Top 5 Case Studies for Data Analytics: You Must Know Before Attending an Interview
1. Retail: Target's Predictive Analytics for Customer Behavior
Company: Target
Challenge: Target wanted to identify customers who were expecting a baby to send them personalized promotions.
Solution:
Target used predictive analytics to analyze customers' purchase history and identify patterns that indicated pregnancy.
They tracked purchases of items like unscented lotion, vitamins, and cotton balls.
Outcome:
The algorithm successfully identified pregnant customers, enabling Target to send them relevant promotions.
This personalized marketing strategy increased sales and customer loyalty.
2. Healthcare: IBM Watson's Oncology Treatment Recommendations
Company: IBM Watson
Challenge: Oncologists needed support in identifying the best treatment options for cancer patients.
Solution:
IBM Watson analyzed vast amounts of medical data, including patient records, clinical trials, and medical literature.
It provided oncologists with evidencebased treatment recommendations tailored to individual patients.
Outcome:
Improved treatment accuracy and personalized care for cancer patients.
Reduced time for doctors to develop treatment plans, allowing them to focus more on patient care.
3. Finance: JP Morgan Chase's Fraud Detection System
Company: JP Morgan Chase
Challenge: The bank needed to detect and prevent fraudulent transactions in realtime.
Solution:
Implemented advanced machine learning algorithms to analyze transaction patterns and detect anomalies.
The system flagged suspicious transactions for further investigation.
Outcome:
Significantly reduced fraudulent activities.
Enhanced customer trust and satisfaction due to improved security measures.
4. Sports: Oakland Athletics' Use of Sabermetrics
Team: Oakland Athletics (Moneyball)
Challenge: Compete with larger teams with higher budgets by optimizing player performance and team strategy.
Solution:
Used sabermetrics, a form of advanced statistical analysis, to evaluate player performance and potential.
Focused on undervalued players with high onbase percentages and other key metrics.
Outcome:
Achieved remarkable success with a limited budget.
Revolutionized the approach to team building and player evaluation in baseball and other sports.
5. Ecommerce: Amazon's Recommendation Engine
Company: Amazon
Challenge: Enhance customer shopping experience and increase sales through personalized recommendations.
Solution:
Implemented a recommendation engine using collaborative filtering, which analyzes user behavior and purchase history.
The system suggests products based on what similar users have bought.
Outcome:
Increased average order value and customer retention.
Significantly contributed to Amazon's revenue growth through crossselling and upselling.
Like if it helps ๐
1. Retail: Target's Predictive Analytics for Customer Behavior
Company: Target
Challenge: Target wanted to identify customers who were expecting a baby to send them personalized promotions.
Solution:
Target used predictive analytics to analyze customers' purchase history and identify patterns that indicated pregnancy.
They tracked purchases of items like unscented lotion, vitamins, and cotton balls.
Outcome:
The algorithm successfully identified pregnant customers, enabling Target to send them relevant promotions.
This personalized marketing strategy increased sales and customer loyalty.
2. Healthcare: IBM Watson's Oncology Treatment Recommendations
Company: IBM Watson
Challenge: Oncologists needed support in identifying the best treatment options for cancer patients.
Solution:
IBM Watson analyzed vast amounts of medical data, including patient records, clinical trials, and medical literature.
It provided oncologists with evidencebased treatment recommendations tailored to individual patients.
Outcome:
Improved treatment accuracy and personalized care for cancer patients.
Reduced time for doctors to develop treatment plans, allowing them to focus more on patient care.
3. Finance: JP Morgan Chase's Fraud Detection System
Company: JP Morgan Chase
Challenge: The bank needed to detect and prevent fraudulent transactions in realtime.
Solution:
Implemented advanced machine learning algorithms to analyze transaction patterns and detect anomalies.
The system flagged suspicious transactions for further investigation.
Outcome:
Significantly reduced fraudulent activities.
Enhanced customer trust and satisfaction due to improved security measures.
4. Sports: Oakland Athletics' Use of Sabermetrics
Team: Oakland Athletics (Moneyball)
Challenge: Compete with larger teams with higher budgets by optimizing player performance and team strategy.
Solution:
Used sabermetrics, a form of advanced statistical analysis, to evaluate player performance and potential.
Focused on undervalued players with high onbase percentages and other key metrics.
Outcome:
Achieved remarkable success with a limited budget.
Revolutionized the approach to team building and player evaluation in baseball and other sports.
5. Ecommerce: Amazon's Recommendation Engine
Company: Amazon
Challenge: Enhance customer shopping experience and increase sales through personalized recommendations.
Solution:
Implemented a recommendation engine using collaborative filtering, which analyzes user behavior and purchase history.
The system suggests products based on what similar users have bought.
Outcome:
Increased average order value and customer retention.
Significantly contributed to Amazon's revenue growth through crossselling and upselling.
Like if it helps ๐
โค2๐2
Entry-level AI/ML Jobs nowadays
- 3+ years of deploying GPT models without touching the keyboard.
- 5+ years of experience using TensorFlow, scikit-learn, etc.
- 4+ years of Python/Java experience.
- Graduate from a reputable university (TOP TIER UNIVERSITY) with a minimum GPA of 3.99/4.00.
- Expertise in Database System Management, Frontend Development, and System Integration.
- Proficiency in Python and one or more programming languages such as Java, Javascript, or GoLang is a plus
- 4+ years with training, fine-tuning, and deploying LLMs (e.g., GPT, LLAMA, mistral)
โข Expertise in using Al development frameworks such as TensorFlow, PyTorch, LangChain, Hugging Face Transformers
- Must be a certified Kubernetes administrator.
- Ability to write production-ready code in less than 24 hours.
- Proven track record of solving world hunger with AI.
- Must have telepathic debugging skills.
- Willing to work weekends, holidays, and during full moons.
Oh, and the most important requirement: must be resilient in handling sudden revisions from the boss
- 3+ years of deploying GPT models without touching the keyboard.
- 5+ years of experience using TensorFlow, scikit-learn, etc.
- 4+ years of Python/Java experience.
- Graduate from a reputable university (TOP TIER UNIVERSITY) with a minimum GPA of 3.99/4.00.
- Expertise in Database System Management, Frontend Development, and System Integration.
- Proficiency in Python and one or more programming languages such as Java, Javascript, or GoLang is a plus
- 4+ years with training, fine-tuning, and deploying LLMs (e.g., GPT, LLAMA, mistral)
โข Expertise in using Al development frameworks such as TensorFlow, PyTorch, LangChain, Hugging Face Transformers
- Must be a certified Kubernetes administrator.
- Ability to write production-ready code in less than 24 hours.
- Proven track record of solving world hunger with AI.
- Must have telepathic debugging skills.
- Willing to work weekends, holidays, and during full moons.
Oh, and the most important requirement: must be resilient in handling sudden revisions from the boss
๐ข8โค1๐1
๐๐Data Analytics skills and projects to add in a resume to get shortlisted
1. Technical Skills:
Proficiency in data analysis tools (e.g., Python, R, SQL).
Data visualization skills using tools like Tableau or Power BI.
Experience with statistical analysis and modeling techniques.
2. Data Cleaning and Preprocessing:
Showcase skills in cleaning and preprocessing raw data for analysis.
Highlight expertise in handling missing data and outliers effectively.
3. Database Management:
Mention experience with databases (e.g., MySQL, PostgreSQL) for data retrieval and manipulation.
4. Machine Learning:
If applicable, include knowledge of machine learning algorithms and their application in data analytics projects.
5. Data Storytelling:
Emphasize your ability to communicate insights effectively through data storytelling.
6. Big Data Technologies:
If relevant, mention experience with big data technologies such as Hadoop or Spark.
7. Business Acumen:
Showcase an understanding of the business context and how your analytics work contributes to organizational goals.
8. Problem-Solving:
Highlight instances where you solved business problems through data-driven insights.
9. Collaboration and Communication:
Demonstrate your ability to work in a team and communicate complex findings to non-technical stakeholders.
10. Projects:
List specific data analytics projects you've worked on, detailing the problem, methodology, tools used, and the impact on decision-making.
11. Certifications:
Include relevant certifications such as those from platforms like Coursera, edX, or industry-recognized certifications in data analytics.
12. Continuous Learning:
Showcase any ongoing education, workshops, or courses to display your commitment to staying updated in the field.
๐ผTailor your resume to the specific job description, emphasizing the skills and experiences that align with the requirements of the position you're applying for.
1. Technical Skills:
Proficiency in data analysis tools (e.g., Python, R, SQL).
Data visualization skills using tools like Tableau or Power BI.
Experience with statistical analysis and modeling techniques.
2. Data Cleaning and Preprocessing:
Showcase skills in cleaning and preprocessing raw data for analysis.
Highlight expertise in handling missing data and outliers effectively.
3. Database Management:
Mention experience with databases (e.g., MySQL, PostgreSQL) for data retrieval and manipulation.
4. Machine Learning:
If applicable, include knowledge of machine learning algorithms and their application in data analytics projects.
5. Data Storytelling:
Emphasize your ability to communicate insights effectively through data storytelling.
6. Big Data Technologies:
If relevant, mention experience with big data technologies such as Hadoop or Spark.
7. Business Acumen:
Showcase an understanding of the business context and how your analytics work contributes to organizational goals.
8. Problem-Solving:
Highlight instances where you solved business problems through data-driven insights.
9. Collaboration and Communication:
Demonstrate your ability to work in a team and communicate complex findings to non-technical stakeholders.
10. Projects:
List specific data analytics projects you've worked on, detailing the problem, methodology, tools used, and the impact on decision-making.
11. Certifications:
Include relevant certifications such as those from platforms like Coursera, edX, or industry-recognized certifications in data analytics.
12. Continuous Learning:
Showcase any ongoing education, workshops, or courses to display your commitment to staying updated in the field.
๐ผTailor your resume to the specific job description, emphasizing the skills and experiences that align with the requirements of the position you're applying for.
โค2๐1
Anyone with an Internet connection can learn ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ ๐ณ๐ผ๐ฟ ๐ณ๐ฟ๐ฒ๐ฒ:
No more excuses now.
SQL - https://lnkd.in/gQkjdAWP
Python - https://lnkd.in/gQk8siKn
Excel - https://lnkd.in/d-txjPJn
Power BI - https://lnkd.in/gs6RgH2m
Tableau - https://lnkd.in/dDFdyS8y
Data Visualization - https://lnkd.in/dcHqhgn4
Data Cleaning - https://lnkd.in/dCXspR4p
Google Sheets - https://lnkd.in/d7eDi8pn
Statistics - https://lnkd.in/dgaw6KMW
Projects - https://lnkd.in/g2Fjzbma
Portfolio - https://t.iss.one/DataPortfolio
If you've read so far, do LIKE and share this channel with your friends & loved ones โฅ๏ธ
Hope it helps :)
No more excuses now.
SQL - https://lnkd.in/gQkjdAWP
Python - https://lnkd.in/gQk8siKn
Excel - https://lnkd.in/d-txjPJn
Power BI - https://lnkd.in/gs6RgH2m
Tableau - https://lnkd.in/dDFdyS8y
Data Visualization - https://lnkd.in/dcHqhgn4
Data Cleaning - https://lnkd.in/dCXspR4p
Google Sheets - https://lnkd.in/d7eDi8pn
Statistics - https://lnkd.in/dgaw6KMW
Projects - https://lnkd.in/g2Fjzbma
Portfolio - https://t.iss.one/DataPortfolio
If you've read so far, do LIKE and share this channel with your friends & loved ones โฅ๏ธ
Hope it helps :)
โค5๐1