In a data science project, using multiple scalers can be beneficial when dealing with features that have different scales or distributions. Scaling is important in machine learning to ensure that all features contribute equally to the model training process and to prevent certain features from dominating others.
Here are some scenarios where using multiple scalers can be helpful in a data science project:
1. Standardization vs. Normalization: Standardization (scaling features to have a mean of 0 and a standard deviation of 1) and normalization (scaling features to a range between 0 and 1) are two common scaling techniques. Depending on the distribution of your data, you may choose to apply different scalers to different features.
2. RobustScaler vs. MinMaxScaler: RobustScaler is a good choice when dealing with outliers, as it scales the data based on percentiles rather than the mean and standard deviation. MinMaxScaler, on the other hand, scales the data to a specific range. Using both scalers can be beneficial when dealing with mixed types of data.
3. Feature engineering: In feature engineering, you may create new features that have different scales than the original features. In such cases, applying different scalers to different sets of features can help maintain consistency in the scaling process.
4. Pipeline flexibility: By using multiple scalers within a preprocessing pipeline, you can experiment with different scaling techniques and easily switch between them to see which one works best for your data.
5. Domain-specific considerations: Certain domains may require specific scaling techniques based on the nature of the data. For example, in image processing tasks, pixel values are often scaled differently than numerical features.
When using multiple scalers in a data science project, it's important to evaluate the impact of scaling on the model performance through cross-validation or other evaluation methods. Try experimenting with different scaling techniques to you find the optimal approach for your specific dataset and machine learning model.
Here are some scenarios where using multiple scalers can be helpful in a data science project:
1. Standardization vs. Normalization: Standardization (scaling features to have a mean of 0 and a standard deviation of 1) and normalization (scaling features to a range between 0 and 1) are two common scaling techniques. Depending on the distribution of your data, you may choose to apply different scalers to different features.
2. RobustScaler vs. MinMaxScaler: RobustScaler is a good choice when dealing with outliers, as it scales the data based on percentiles rather than the mean and standard deviation. MinMaxScaler, on the other hand, scales the data to a specific range. Using both scalers can be beneficial when dealing with mixed types of data.
3. Feature engineering: In feature engineering, you may create new features that have different scales than the original features. In such cases, applying different scalers to different sets of features can help maintain consistency in the scaling process.
4. Pipeline flexibility: By using multiple scalers within a preprocessing pipeline, you can experiment with different scaling techniques and easily switch between them to see which one works best for your data.
5. Domain-specific considerations: Certain domains may require specific scaling techniques based on the nature of the data. For example, in image processing tasks, pixel values are often scaled differently than numerical features.
When using multiple scalers in a data science project, it's important to evaluate the impact of scaling on the model performance through cross-validation or other evaluation methods. Try experimenting with different scaling techniques to you find the optimal approach for your specific dataset and machine learning model.
5 Algorithms you must know as a data scientist ๐ฉโ๐ป ๐งโ๐ป
1. Dimensionality Reduction
- PCA, t-SNE, LDA
2. Regression models
- Linesr regression, Kernel-based regression models, Lasso Regression, Ridge regression, Elastic-net regression
3. Classification models
- Binary classification- Logistic regression, SVM
- Multiclass classification- One versus one, one versus many
- Multilabel classification
4. Clustering models
- K Means clustering, Hierarchical clustering, DBSCAN, BIRCH models
5. Decision tree based models
- CART model, ensemble models(XGBoost, LightGBM, CatBoost)
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/free4unow_backup
Like if you need similar content ๐๐
1. Dimensionality Reduction
- PCA, t-SNE, LDA
2. Regression models
- Linesr regression, Kernel-based regression models, Lasso Regression, Ridge regression, Elastic-net regression
3. Classification models
- Binary classification- Logistic regression, SVM
- Multiclass classification- One versus one, one versus many
- Multilabel classification
4. Clustering models
- K Means clustering, Hierarchical clustering, DBSCAN, BIRCH models
5. Decision tree based models
- CART model, ensemble models(XGBoost, LightGBM, CatBoost)
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/free4unow_backup
Like if you need similar content ๐๐
โค4๐1
Telegram
Generative AI
๐4
Some useful PYTHON libraries for data science
NumPy stands for Numerical Python. The most powerful feature of NumPy is n-dimensional array. This library also contains basic linear algebra functions, Fourier transforms, advanced random number capabilities and tools for integration with other low level languages like Fortran, C and C++
SciPy stands for Scientific Python. SciPy is built on NumPy. It is one of the most useful library for variety of high level science and engineering modules like discrete Fourier transform, Linear Algebra, Optimization and Sparse matrices.
Matplotlib for plotting vast variety of graphs, starting from histograms to line plots to heat plots.. You can use Pylab feature in ipython notebook (ipython notebook โpylab = inline) to use these plotting features inline. If you ignore the inline option, then pylab converts ipython environment to an environment, very similar to Matlab. You can also use Latex commands to add math to your plot.
Pandas for structured data operations and manipulations. It is extensively used for data munging and preparation. Pandas were added relatively recently to Python and have been instrumental in boosting Pythonโs usage in data scientist community.
Scikit Learn for machine learning. Built on NumPy, SciPy and matplotlib, this library contains a lot of efficient tools for machine learning and statistical modeling including classification, regression, clustering and dimensionality reduction.
Statsmodels for statistical modeling. Statsmodels is a Python module that allows users to explore data, estimate statistical models, and perform statistical tests. An extensive list of descriptive statistics, statistical tests, plotting functions, and result statistics are available for different types of data and each estimator.
Seaborn for statistical data visualization. Seaborn is a library for making attractive and informative statistical graphics in Python. It is based on matplotlib. Seaborn aims to make visualization a central part of exploring and understanding data.
Bokeh for creating interactive plots, dashboards and data applications on modern web-browsers. It empowers the user to generate elegant and concise graphics in the style of D3.js. Moreover, it has the capability of high-performance interactivity over very large or streaming datasets.
Blaze for extending the capability of Numpy and Pandas to distributed and streaming datasets. It can be used to access data from a multitude of sources including Bcolz, MongoDB, SQLAlchemy, Apache Spark, PyTables, etc. Together with Bokeh, Blaze can act as a very powerful tool for creating effective visualizations and dashboards on huge chunks of data.
Scrapy for web crawling. It is a very useful framework for getting specific patterns of data. It has the capability to start at a website home url and then dig through web-pages within the website to gather information.
SymPy for symbolic computation. It has wide-ranging capabilities from basic symbolic arithmetic to calculus, algebra, discrete mathematics and quantum physics. Another useful feature is the capability of formatting the result of the computations as LaTeX code.
Requests for accessing the web. It works similar to the the standard python library urllib2 but is much easier to code. You will find subtle differences with urllib2 but for beginners, Requests might be more convenient.
Additional libraries, you might need:
os for Operating system and file operations
networkx and igraph for graph based data manipulations
regular expressions for finding patterns in text data
BeautifulSoup for scrapping web. It is inferior to Scrapy as it will extract information from just a single webpage in a run.
NumPy stands for Numerical Python. The most powerful feature of NumPy is n-dimensional array. This library also contains basic linear algebra functions, Fourier transforms, advanced random number capabilities and tools for integration with other low level languages like Fortran, C and C++
SciPy stands for Scientific Python. SciPy is built on NumPy. It is one of the most useful library for variety of high level science and engineering modules like discrete Fourier transform, Linear Algebra, Optimization and Sparse matrices.
Matplotlib for plotting vast variety of graphs, starting from histograms to line plots to heat plots.. You can use Pylab feature in ipython notebook (ipython notebook โpylab = inline) to use these plotting features inline. If you ignore the inline option, then pylab converts ipython environment to an environment, very similar to Matlab. You can also use Latex commands to add math to your plot.
Pandas for structured data operations and manipulations. It is extensively used for data munging and preparation. Pandas were added relatively recently to Python and have been instrumental in boosting Pythonโs usage in data scientist community.
Scikit Learn for machine learning. Built on NumPy, SciPy and matplotlib, this library contains a lot of efficient tools for machine learning and statistical modeling including classification, regression, clustering and dimensionality reduction.
Statsmodels for statistical modeling. Statsmodels is a Python module that allows users to explore data, estimate statistical models, and perform statistical tests. An extensive list of descriptive statistics, statistical tests, plotting functions, and result statistics are available for different types of data and each estimator.
Seaborn for statistical data visualization. Seaborn is a library for making attractive and informative statistical graphics in Python. It is based on matplotlib. Seaborn aims to make visualization a central part of exploring and understanding data.
Bokeh for creating interactive plots, dashboards and data applications on modern web-browsers. It empowers the user to generate elegant and concise graphics in the style of D3.js. Moreover, it has the capability of high-performance interactivity over very large or streaming datasets.
Blaze for extending the capability of Numpy and Pandas to distributed and streaming datasets. It can be used to access data from a multitude of sources including Bcolz, MongoDB, SQLAlchemy, Apache Spark, PyTables, etc. Together with Bokeh, Blaze can act as a very powerful tool for creating effective visualizations and dashboards on huge chunks of data.
Scrapy for web crawling. It is a very useful framework for getting specific patterns of data. It has the capability to start at a website home url and then dig through web-pages within the website to gather information.
SymPy for symbolic computation. It has wide-ranging capabilities from basic symbolic arithmetic to calculus, algebra, discrete mathematics and quantum physics. Another useful feature is the capability of formatting the result of the computations as LaTeX code.
Requests for accessing the web. It works similar to the the standard python library urllib2 but is much easier to code. You will find subtle differences with urllib2 but for beginners, Requests might be more convenient.
Additional libraries, you might need:
os for Operating system and file operations
networkx and igraph for graph based data manipulations
regular expressions for finding patterns in text data
BeautifulSoup for scrapping web. It is inferior to Scrapy as it will extract information from just a single webpage in a run.
If I were to start my Machine Learning career from scratch (as an engineer), I'd focus here (no specific order):
1. SQL
2. Python
3. ML fundamentals
4. DSA
5. Testing
6. Prob, stats, lin. alg
7. Problem solving
And building as much as possible.
1. SQL
2. Python
3. ML fundamentals
4. DSA
5. Testing
6. Prob, stats, lin. alg
7. Problem solving
And building as much as possible.
๐1
5โฃ Project ideas for a data analyst in the investment banking domain
M&A Deal Analysis: Analyze historical mergers and acquisitions (M&A) data to identify trends, such as deal size, industries involved, or geographical regions. Create visualizations and reports to assist in making informed investment decisions.
Risk Assessment Model: Develop a risk assessment model using financial indicators and market data. Predict potential financial risks for investment opportunities, such as stocks, bonds, or startups, and provide recommendations based on risk levels.
Portfolio Performance Analysis: Evaluate the performance of investment portfolios over time. Calculate key performance indicators (KPIs) like Sharpe ratio, alpha, and beta to assess how well portfolios are performing relative to the market.
Sentiment Analysis for Trading: Use natural language processing (NLP) techniques to analyze news articles, social media posts, and financial reports to gauge market sentiment. Develop trading strategies based on sentiment analysis results.
IPO Analysis: Analyze data related to initial public offerings (IPOs), including company financials, industry comparisons, and market conditions. Create a scoring system or model to assess the potential success of IPO investments.
Hope it helps :)
M&A Deal Analysis: Analyze historical mergers and acquisitions (M&A) data to identify trends, such as deal size, industries involved, or geographical regions. Create visualizations and reports to assist in making informed investment decisions.
Risk Assessment Model: Develop a risk assessment model using financial indicators and market data. Predict potential financial risks for investment opportunities, such as stocks, bonds, or startups, and provide recommendations based on risk levels.
Portfolio Performance Analysis: Evaluate the performance of investment portfolios over time. Calculate key performance indicators (KPIs) like Sharpe ratio, alpha, and beta to assess how well portfolios are performing relative to the market.
Sentiment Analysis for Trading: Use natural language processing (NLP) techniques to analyze news articles, social media posts, and financial reports to gauge market sentiment. Develop trading strategies based on sentiment analysis results.
IPO Analysis: Analyze data related to initial public offerings (IPOs), including company financials, industry comparisons, and market conditions. Create a scoring system or model to assess the potential success of IPO investments.
Hope it helps :)
๐5โค3
Python Roadmap for 2025: Complete Guide
1. Python Fundamentals
1.1 Variables, constants, and comments.
1.2 Data types: int, float, str, bool, complex.
1.3 Input and output (input(), print(), formatted strings).
1.4 Python syntax: Indentation and code structure.
2. Operators
2.1 Arithmetic: +, -, *, /, %, //, **.
2.2 Comparison: ==, !=, <, >, <=, >=.
2.3 Logical: and, or, not.
2.4 Bitwise: &, |, ^, ~, <<, >>.
2.5 Identity: is, is not.
2.6 Membership: in, not in.
3. Control Flow
3.1 Conditional statements: if, elif, else.
3.2 Loops: for, while.
3.3 Loop control: break, continue, pass.
4. Data Structures
4.1 Lists: Indexing, slicing, methods (append(), pop(), sort(), etc.).
4.2 Tuples: Immutability, packing/unpacking.
4.3 Dictionaries: Key-value pairs, methods (get(), items(), etc.).
4.4 Sets: Unique elements, set operations (union, intersection).
4.5 Strings: Immutability, methods (split(), strip(), replace()).
5. Functions
5.1 Defining functions with def.
5.2 Arguments: Positional, keyword, default, *args, **kwargs.
5.3 Anonymous functions (lambda).
5.4 Recursion.
6. Modules and Packages
6.1 Importing: import, from ... import.
6.2 Standard libraries: math, os, sys, random, datetime, time.
6.3 Installing external libraries with pip.
7. File Handling
7.1 Open and close files (open(), close()).
7.2 Read and write (read(), write(), readlines()).
7.3 Using context managers (with open(...)).
8. Object-Oriented Programming (OOP)
8.1 Classes and objects.
8.2 Methods and attributes.
8.3 Constructor (init).
8.4 Inheritance, polymorphism, encapsulation.
8.5 Special methods (str, repr, etc.).
9. Error and Exception Handling
9.1 try, except, else, finally.
9.2 Raising exceptions (raise).
9.3 Custom exceptions.
10. Comprehensions
10.1 List comprehensions.
10.2 Dictionary comprehensions.
10.3 Set comprehensions.
11. Iterators and Generators
11.1 Creating iterators using iter() and next().
11.2 Generators with yield.
11.3 Generator expressions.
12. Decorators and Closures
12.1 Functions as first-class citizens.
12.2 Nested functions.
12.3 Closures.
12.4 Creating and applying decorators.
13. Advanced Topics
13.1 Context managers (with statement).
13.2 Multithreading and multiprocessing.
13.3 Asynchronous programming with async and await.
13.4 Python's Global Interpreter Lock (GIL).
14. Python Internals
14.1 Mutable vs immutable objects.
14.2 Memory management and garbage collection.
14.3 Python's name == "main" mechanism.
15. Libraries and Frameworks
15.1 Data Science: NumPy, Pandas, Matplotlib, Seaborn.
15.2 Web Development: Flask, Django, FastAPI.
15.3 Testing: unittest, pytest.
15.4 APIs: requests, http.client.
15.5 Automation: selenium, os.
15.6 Machine Learning: scikit-learn, TensorFlow, PyTorch.
16. Tools and Best Practices
16.1 Debugging: pdb, breakpoints.
16.2 Code style: PEP 8 guidelines.
16.3 Virtual environments: venv.
16.4 Version control: Git + GitHub.
๐ ๐ฃ๐ฟ๐ฒ๐บ๐ถ๐๐บ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ : https://topmate.io/coding/914624
๐ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Join What's app channel for jobs updates: https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
1. Python Fundamentals
1.1 Variables, constants, and comments.
1.2 Data types: int, float, str, bool, complex.
1.3 Input and output (input(), print(), formatted strings).
1.4 Python syntax: Indentation and code structure.
2. Operators
2.1 Arithmetic: +, -, *, /, %, //, **.
2.2 Comparison: ==, !=, <, >, <=, >=.
2.3 Logical: and, or, not.
2.4 Bitwise: &, |, ^, ~, <<, >>.
2.5 Identity: is, is not.
2.6 Membership: in, not in.
3. Control Flow
3.1 Conditional statements: if, elif, else.
3.2 Loops: for, while.
3.3 Loop control: break, continue, pass.
4. Data Structures
4.1 Lists: Indexing, slicing, methods (append(), pop(), sort(), etc.).
4.2 Tuples: Immutability, packing/unpacking.
4.3 Dictionaries: Key-value pairs, methods (get(), items(), etc.).
4.4 Sets: Unique elements, set operations (union, intersection).
4.5 Strings: Immutability, methods (split(), strip(), replace()).
5. Functions
5.1 Defining functions with def.
5.2 Arguments: Positional, keyword, default, *args, **kwargs.
5.3 Anonymous functions (lambda).
5.4 Recursion.
6. Modules and Packages
6.1 Importing: import, from ... import.
6.2 Standard libraries: math, os, sys, random, datetime, time.
6.3 Installing external libraries with pip.
7. File Handling
7.1 Open and close files (open(), close()).
7.2 Read and write (read(), write(), readlines()).
7.3 Using context managers (with open(...)).
8. Object-Oriented Programming (OOP)
8.1 Classes and objects.
8.2 Methods and attributes.
8.3 Constructor (init).
8.4 Inheritance, polymorphism, encapsulation.
8.5 Special methods (str, repr, etc.).
9. Error and Exception Handling
9.1 try, except, else, finally.
9.2 Raising exceptions (raise).
9.3 Custom exceptions.
10. Comprehensions
10.1 List comprehensions.
10.2 Dictionary comprehensions.
10.3 Set comprehensions.
11. Iterators and Generators
11.1 Creating iterators using iter() and next().
11.2 Generators with yield.
11.3 Generator expressions.
12. Decorators and Closures
12.1 Functions as first-class citizens.
12.2 Nested functions.
12.3 Closures.
12.4 Creating and applying decorators.
13. Advanced Topics
13.1 Context managers (with statement).
13.2 Multithreading and multiprocessing.
13.3 Asynchronous programming with async and await.
13.4 Python's Global Interpreter Lock (GIL).
14. Python Internals
14.1 Mutable vs immutable objects.
14.2 Memory management and garbage collection.
14.3 Python's name == "main" mechanism.
15. Libraries and Frameworks
15.1 Data Science: NumPy, Pandas, Matplotlib, Seaborn.
15.2 Web Development: Flask, Django, FastAPI.
15.3 Testing: unittest, pytest.
15.4 APIs: requests, http.client.
15.5 Automation: selenium, os.
15.6 Machine Learning: scikit-learn, TensorFlow, PyTorch.
16. Tools and Best Practices
16.1 Debugging: pdb, breakpoints.
16.2 Code style: PEP 8 guidelines.
16.3 Virtual environments: venv.
16.4 Version control: Git + GitHub.
๐ ๐ฃ๐ฟ๐ฒ๐บ๐ถ๐๐บ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ : https://topmate.io/coding/914624
๐ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Join What's app channel for jobs updates: https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
๐6โค2
If you're into deep learning, then you know that students usually one of the two paths:
- Computer vision
- Natural language processing (NLP)
If you're into NLP, here are 5 fundamental concepts you should know:
- Computer vision
- Natural language processing (NLP)
If you're into NLP, here are 5 fundamental concepts you should know:
Before we start, What is NLP?
Natural Language Processing (NLP) is a branch of artificial intelligence that focuses on the interaction between computers and humans through language.
It enables machines to understand, interpret, and respond to human language in a way that is both meaningful and useful.
Data scientists need NLP to analyze, process, and generate insights from large volumes of textual data, aiding in tasks ranging from sentiment analysis to automated summarization.
Natural Language Processing (NLP) is a branch of artificial intelligence that focuses on the interaction between computers and humans through language.
It enables machines to understand, interpret, and respond to human language in a way that is both meaningful and useful.
Data scientists need NLP to analyze, process, and generate insights from large volumes of textual data, aiding in tasks ranging from sentiment analysis to automated summarization.
๐2