Forwarded from Data Science & Machine Learning
Important Topics to become a data scientist
[Advanced Level]
ππ
1. Mathematics
Linear Algebra
Analytic Geometry
Matrix
Vector Calculus
Optimization
Regression
Dimensionality Reduction
Density Estimation
Classification
2. Probability
Introduction to Probability
1D Random Variable
The function of One Random Variable
Joint Probability Distribution
Discrete Distribution
Normal Distribution
3. Statistics
Introduction to Statistics
Data Description
Random Samples
Sampling Distribution
Parameter Estimation
Hypotheses Testing
Regression
4. Programming
Python:
Python Basics
List
Set
Tuples
Dictionary
Function
NumPy
Pandas
Matplotlib/Seaborn
R Programming:
R Basics
Vector
List
Data Frame
Matrix
Array
Function
dplyr
ggplot2
Tidyr
Shiny
DataBase:
SQL
MongoDB
Data Structures
Web scraping
Linux
Git
5. Machine Learning
How Model Works
Basic Data Exploration
First ML Model
Model Validation
Underfitting & Overfitting
Random Forest
Handling Missing Values
Handling Categorical Variables
Pipelines
Cross-Validation(R)
XGBoost(Python|R)
Data Leakage
6. Deep Learning
Artificial Neural Network
Convolutional Neural Network
Recurrent Neural Network
TensorFlow
Keras
PyTorch
A Single Neuron
Deep Neural Network
Stochastic Gradient Descent
Overfitting and Underfitting
Dropout Batch Normalization
Binary Classification
7. Feature Engineering
Baseline Model
Categorical Encodings
Feature Generation
Feature Selection
8. Natural Language Processing
Text Classification
Word Vectors
9. Data Visualization Tools
BI (Business Intelligence):
Tableau
Power BI
Qlik View
Qlik Sense
10. Deployment
Microsoft Azure
Heroku
Google Cloud Platform
Flask
Django
Join @datasciencefun to learning important data science and machine learning concepts
ENJOY LEARNING ππ
[Advanced Level]
ππ
1. Mathematics
Linear Algebra
Analytic Geometry
Matrix
Vector Calculus
Optimization
Regression
Dimensionality Reduction
Density Estimation
Classification
2. Probability
Introduction to Probability
1D Random Variable
The function of One Random Variable
Joint Probability Distribution
Discrete Distribution
Normal Distribution
3. Statistics
Introduction to Statistics
Data Description
Random Samples
Sampling Distribution
Parameter Estimation
Hypotheses Testing
Regression
4. Programming
Python:
Python Basics
List
Set
Tuples
Dictionary
Function
NumPy
Pandas
Matplotlib/Seaborn
R Programming:
R Basics
Vector
List
Data Frame
Matrix
Array
Function
dplyr
ggplot2
Tidyr
Shiny
DataBase:
SQL
MongoDB
Data Structures
Web scraping
Linux
Git
5. Machine Learning
How Model Works
Basic Data Exploration
First ML Model
Model Validation
Underfitting & Overfitting
Random Forest
Handling Missing Values
Handling Categorical Variables
Pipelines
Cross-Validation(R)
XGBoost(Python|R)
Data Leakage
6. Deep Learning
Artificial Neural Network
Convolutional Neural Network
Recurrent Neural Network
TensorFlow
Keras
PyTorch
A Single Neuron
Deep Neural Network
Stochastic Gradient Descent
Overfitting and Underfitting
Dropout Batch Normalization
Binary Classification
7. Feature Engineering
Baseline Model
Categorical Encodings
Feature Generation
Feature Selection
8. Natural Language Processing
Text Classification
Word Vectors
9. Data Visualization Tools
BI (Business Intelligence):
Tableau
Power BI
Qlik View
Qlik Sense
10. Deployment
Microsoft Azure
Heroku
Google Cloud Platform
Flask
Django
Join @datasciencefun to learning important data science and machine learning concepts
ENJOY LEARNING ππ
π60β€9π2π₯1π₯°1π€―1
  Data Science Projects pinned Β«Important Topics to become a data scientist [Advanced Level] ππ  1. Mathematics  Linear Algebra Analytic Geometry Matrix Vector Calculus Optimization Regression Dimensionality Reduction Density Estimation Classification  2. Probability   Introduction to Probabilityβ¦Β»
  Some helpful Data science projects for beginners
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/digit-recognizer
https://www.kaggle.com/c/titanic
BEST RESOURCES TO LEARN DATA SCIENCE AND MACHINE LEARNING FOR FREE
https://developers.google.com/machine-learning/crash-course
https://www.kaggle.com/learn/overview
https://forums.fast.ai/t/recommended-python-learning-resources/26888
https://www.fast.ai/
https://imp.i115008.net/JrBjZR
https://ern.li/OP/1qvkxbfaxqj
Join @datasciencefun for more free resources
ENJOY LEARNING ππ
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/digit-recognizer
https://www.kaggle.com/c/titanic
BEST RESOURCES TO LEARN DATA SCIENCE AND MACHINE LEARNING FOR FREE
https://developers.google.com/machine-learning/crash-course
https://www.kaggle.com/learn/overview
https://forums.fast.ai/t/recommended-python-learning-resources/26888
https://www.fast.ai/
https://imp.i115008.net/JrBjZR
https://ern.li/OP/1qvkxbfaxqj
Join @datasciencefun for more free resources
ENJOY LEARNING ππ
π13β€2
  15 Best Project Ideas for Python : π
π Beginner Level:
1. Simple Calculator
2. To-Do List
3. Number Guessing Game
4. Dice Rolling Simulator
5. Word Counter
π Intermediate Level:
6. Weather App
7. URL Shortener
8. Movie Recommender System
9. Chatbot
10. Image Caption Generator
π Advanced Level:
11. Stock Market Analysis
12. Autonomous Drone Control
13. Music Genre Classification
14. Real-Time Object Detection
15. Natural Language Processing (NLP) Sentiment Analysis
π Beginner Level:
1. Simple Calculator
2. To-Do List
3. Number Guessing Game
4. Dice Rolling Simulator
5. Word Counter
π Intermediate Level:
6. Weather App
7. URL Shortener
8. Movie Recommender System
9. Chatbot
10. Image Caption Generator
π Advanced Level:
11. Stock Market Analysis
12. Autonomous Drone Control
13. Music Genre Classification
14. Real-Time Object Detection
15. Natural Language Processing (NLP) Sentiment Analysis
π13β€4
  Forwarded from Python for Data Analysts
π Predictive Modeling for Future Stock Prices in Python: A Step-by-Step Guide
The process of building a stock price prediction model using Python.
1. Import required modules
2. Obtaining historical data on stock prices
3. Selection of features.
4. Definition of features and target variable
5. Preparing data for training
6. Separation of data into training and test sets
7. Building and training the model
8. Making forecasts
9. Trading Strategy Testing
The process of building a stock price prediction model using Python.
1. Import required modules
2. Obtaining historical data on stock prices
3. Selection of features.
4. Definition of features and target variable
5. Preparing data for training
6. Separation of data into training and test sets
7. Building and training the model
8. Making forecasts
9. Trading Strategy Testing
π19β€2π₯°2