Machine Learning Algorithms every data scientist should know:
π Supervised Learning:
πΉ Regression
β Linear Regression
β Ridge & Lasso Regression
β Polynomial Regression
πΉ Classification
β Logistic Regression
β K-Nearest Neighbors (KNN)
β Decision Tree
β Random Forest
β Support Vector Machine (SVM)
β Naive Bayes
β Gradient Boosting (XGBoost, LightGBM, CatBoost)
π Unsupervised Learning:
πΉ Clustering
β K-Means
β Hierarchical Clustering
β DBSCAN
πΉ Dimensionality Reduction
β PCA (Principal Component Analysis)
β t-SNE
β LDA (Linear Discriminant Analysis)
π Reinforcement Learning (Basics):
β Q-Learning
β Deep Q Network (DQN)
π Ensemble Techniques:
β Bagging (Random Forest)
β Boosting (XGBoost, AdaBoost, Gradient Boosting)
β Stacking
Donβt forget to learn model evaluation metrics: accuracy, precision, recall, F1-score, AUC-ROC, confusion matrix, etc.
Free Machine Learning Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
React β€οΈ for more free resources
π Supervised Learning:
πΉ Regression
β Linear Regression
β Ridge & Lasso Regression
β Polynomial Regression
πΉ Classification
β Logistic Regression
β K-Nearest Neighbors (KNN)
β Decision Tree
β Random Forest
β Support Vector Machine (SVM)
β Naive Bayes
β Gradient Boosting (XGBoost, LightGBM, CatBoost)
π Unsupervised Learning:
πΉ Clustering
β K-Means
β Hierarchical Clustering
β DBSCAN
πΉ Dimensionality Reduction
β PCA (Principal Component Analysis)
β t-SNE
β LDA (Linear Discriminant Analysis)
π Reinforcement Learning (Basics):
β Q-Learning
β Deep Q Network (DQN)
π Ensemble Techniques:
β Bagging (Random Forest)
β Boosting (XGBoost, AdaBoost, Gradient Boosting)
β Stacking
Donβt forget to learn model evaluation metrics: accuracy, precision, recall, F1-score, AUC-ROC, confusion matrix, etc.
Free Machine Learning Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
React β€οΈ for more free resources
β€3