Data Science Projects
52.3K subscribers
379 photos
1 video
57 files
334 links
Perfect channel for Data Scientists

Learn Python, AI, R, Machine Learning, Data Science and many more

Admin: @love_data
Download Telegram
๐Ÿš€ Key Skills for Aspiring Tech Specialists

๐Ÿ“Š Data Analyst:
- Proficiency in SQL for database querying
- Advanced Excel for data manipulation
- Programming with Python or R for data analysis
- Statistical analysis to understand data trends
- Data visualization tools like Tableau or PowerBI
- Data preprocessing to clean and structure data
- Exploratory data analysis techniques

๐Ÿง  Data Scientist:
- Strong knowledge of Python and R for statistical analysis
- Machine learning for predictive modeling
- Deep understanding of mathematics and statistics
- Data wrangling to prepare data for analysis
- Big data platforms like Hadoop or Spark
- Data visualization and communication skills
- Experience with A/B testing frameworks

๐Ÿ— Data Engineer:
- Expertise in SQL and NoSQL databases
- Experience with data warehousing solutions
- ETL (Extract, Transform, Load) process knowledge
- Familiarity with big data tools (e.g., Apache Spark)
- Proficient in Python, Java, or Scala
- Knowledge of cloud services like AWS, GCP, or Azure
- Understanding of data pipeline and workflow management tools

๐Ÿค– Machine Learning Engineer:
- Proficiency in Python and libraries like scikit-learn, TensorFlow
- Solid understanding of machine learning algorithms
- Experience with neural networks and deep learning frameworks
- Ability to implement models and fine-tune their parameters
- Knowledge of software engineering best practices
- Data modeling and evaluation strategies
- Strong mathematical skills, particularly in linear algebra and calculus

๐Ÿง  Deep Learning Engineer:
- Expertise in deep learning frameworks like TensorFlow or PyTorch
- Understanding of Convolutional and Recurrent Neural Networks
- Experience with GPU computing and parallel processing
- Familiarity with computer vision and natural language processing
- Ability to handle large datasets and train complex models
- Research mindset to keep up with the latest developments in deep learning

๐Ÿคฏ AI Engineer:
- Solid foundation in algorithms, logic, and mathematics
- Proficiency in programming languages like Python or C++
- Experience with AI technologies including ML, neural networks, and cognitive computing
- Understanding of AI model deployment and scaling
- Knowledge of AI ethics and responsible AI practices
- Strong problem-solving and analytical skills

๐Ÿ”Š NLP Engineer:
- Background in linguistics and language models
- Proficiency with NLP libraries (e.g., NLTK, spaCy)
- Experience with text preprocessing and tokenization
- Understanding of sentiment analysis, text classification, and named entity recognition
- Familiarity with transformer models like BERT and GPT
- Ability to work with large text datasets and sequential data

๐ŸŒŸ Embrace the world of data and AI, and become the architect of tomorrow's technology!
โค4
In a data science project, using multiple scalers can be beneficial when dealing with features that have different scales or distributions. Scaling is important in machine learning to ensure that all features contribute equally to the model training process and to prevent certain features from dominating others.

Here are some scenarios where using multiple scalers can be helpful in a data science project:

1. Standardization vs. Normalization: Standardization (scaling features to have a mean of 0 and a standard deviation of 1) and normalization (scaling features to a range between 0 and 1) are two common scaling techniques. Depending on the distribution of your data, you may choose to apply different scalers to different features.

2. RobustScaler vs. MinMaxScaler: RobustScaler is a good choice when dealing with outliers, as it scales the data based on percentiles rather than the mean and standard deviation. MinMaxScaler, on the other hand, scales the data to a specific range. Using both scalers can be beneficial when dealing with mixed types of data.

3. Feature engineering: In feature engineering, you may create new features that have different scales than the original features. In such cases, applying different scalers to different sets of features can help maintain consistency in the scaling process.

4. Pipeline flexibility: By using multiple scalers within a preprocessing pipeline, you can experiment with different scaling techniques and easily switch between them to see which one works best for your data.

5. Domain-specific considerations: Certain domains may require specific scaling techniques based on the nature of the data. For example, in image processing tasks, pixel values are often scaled differently than numerical features.

When using multiple scalers in a data science project, it's important to evaluate the impact of scaling on the model performance through cross-validation or other evaluation methods. Try experimenting with different scaling techniques to you find the optimal approach for your specific dataset and machine learning model.
โค4
Step-by-Step Roadmap to Learn Data Science in 2025:

Step 1: Understand the Role
A data scientist in 2025 is expected to:

Analyze data to extract insights

Build predictive models using ML

Communicate findings to stakeholders

Work with large datasets in cloud environments


Step 2: Master the Prerequisite Skills

A. Programming

Learn Python (must-have): Focus on pandas, numpy, matplotlib, seaborn, scikit-learn

R (optional but helpful for statistical analysis)

SQL: Strong command over data extraction and transformation


B. Math & Stats

Probability, Descriptive & Inferential Statistics

Linear Algebra & Calculus (only what's necessary for ML)

Hypothesis testing


Step 3: Learn Data Handling

Data Cleaning, Preprocessing

Exploratory Data Analysis (EDA)

Feature Engineering

Tools: Python (pandas), Excel, SQL


Step 4: Master Machine Learning

Supervised Learning: Linear/Logistic Regression, Decision Trees, Random Forests, XGBoost

Unsupervised Learning: K-Means, Hierarchical Clustering, PCA

Deep Learning (optional): Use TensorFlow or PyTorch

Evaluation Metrics: Accuracy, AUC, Confusion Matrix, RMSE


Step 5: Learn Data Visualization & Storytelling

Python (matplotlib, seaborn, plotly)

Power BI / Tableau

Communicating insights clearly is as important as modeling


Step 6: Use Real Datasets & Projects

Work on projects using Kaggle, UCI, or public APIs

Examples:

Customer churn prediction

Sales forecasting

Sentiment analysis

Fraud detection



Step 7: Understand Cloud & MLOps (2025+ Skills)

Cloud: AWS (S3, EC2, SageMaker), GCP, or Azure

MLOps: Model deployment (Flask, FastAPI), CI/CD for ML, Docker basics


Step 8: Build Portfolio & Resume

Create GitHub repos with well-documented code

Post projects and blogs on Medium or LinkedIn

Prepare a data science-specific resume


Step 9: Apply Smartly

Focus on job roles like: Data Scientist, ML Engineer, Data Analyst โ†’ DS

Use platforms like LinkedIn, Glassdoor, Hirect, AngelList, etc.

Practice data science interviews: case studies, ML concepts, SQL + Python coding


Step 10: Keep Learning & Updating

Follow top newsletters: Data Elixir, Towards Data Science

Read papers (arXiv, Google Scholar) on trending topics: LLMs, AutoML, Explainable AI

Upskill with certifications (Google Data Cert, Coursera, DataCamp, Udemy)

Free Resources to learn Data Science

Kaggle Courses: https://www.kaggle.com/learn

CS50 AI by Harvard: https://cs50.harvard.edu/ai/

Fast.ai: https://course.fast.ai/

Google ML Crash Course: https://developers.google.com/machine-learning/crash-course

Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998

Data Science Books: https://t.iss.one/datalemur

React โค๏ธ for more
โค3๐Ÿ”ฅ1
Some essential concepts every data scientist should understand:

### 1. Statistics and Probability
- Purpose: Understanding data distributions and making inferences.
- Core Concepts: Descriptive statistics (mean, median, mode), inferential statistics, probability distributions (normal, binomial), hypothesis testing, p-values, confidence intervals.

### 2. Programming Languages
- Purpose: Implementing data analysis and machine learning algorithms.
- Popular Languages: Python, R.
- Libraries: NumPy, Pandas, Scikit-learn (Python), dplyr, ggplot2 (R).

### 3. Data Wrangling
- Purpose: Cleaning and transforming raw data into a usable format.
- Techniques: Handling missing values, data normalization, feature engineering, data aggregation.

### 4. Exploratory Data Analysis (EDA)
- Purpose: Summarizing the main characteristics of a dataset, often using visual methods.
- Tools: Matplotlib, Seaborn (Python), ggplot2 (R).
- Techniques: Histograms, scatter plots, box plots, correlation matrices.

### 5. Machine Learning
- Purpose: Building models to make predictions or find patterns in data.
- Core Concepts: Supervised learning (regression, classification), unsupervised learning (clustering, dimensionality reduction), model evaluation (accuracy, precision, recall, F1 score).
- Algorithms: Linear regression, logistic regression, decision trees, random forests, support vector machines, k-means clustering, principal component analysis (PCA).

### 6. Deep Learning
- Purpose: Advanced machine learning techniques using neural networks.
- Core Concepts: Neural networks, backpropagation, activation functions, overfitting, dropout.
- Frameworks: TensorFlow, Keras, PyTorch.

### 7. Natural Language Processing (NLP)
- Purpose: Analyzing and modeling textual data.
- Core Concepts: Tokenization, stemming, lemmatization, TF-IDF, word embeddings.
- Techniques: Sentiment analysis, topic modeling, named entity recognition (NER).

### 8. Data Visualization
- Purpose: Communicating insights through graphical representations.
- Tools: Matplotlib, Seaborn, Plotly (Python), ggplot2, Shiny (R), Tableau.
- Techniques: Bar charts, line graphs, heatmaps, interactive dashboards.

### 9. Big Data Technologies
- Purpose: Handling and analyzing large volumes of data.
- Technologies: Hadoop, Spark.
- Core Concepts: Distributed computing, MapReduce, parallel processing.

### 10. Databases
- Purpose: Storing and retrieving data efficiently.
- Types: SQL databases (MySQL, PostgreSQL), NoSQL databases (MongoDB, Cassandra).
- Core Concepts: Querying, indexing, normalization, transactions.

### 11. Time Series Analysis
- Purpose: Analyzing data points collected or recorded at specific time intervals.
- Core Concepts: Trend analysis, seasonal decomposition, ARIMA models, exponential smoothing.

### 12. Model Deployment and Productionization
- Purpose: Integrating machine learning models into production environments.
- Techniques: API development, containerization (Docker), model serving (Flask, FastAPI).
- Tools: MLflow, TensorFlow Serving, Kubernetes.

### 13. Data Ethics and Privacy
- Purpose: Ensuring ethical use and privacy of data.
- Core Concepts: Bias in data, ethical considerations, data anonymization, GDPR compliance.

### 14. Business Acumen
- Purpose: Aligning data science projects with business goals.
- Core Concepts: Understanding key performance indicators (KPIs), domain knowledge, stakeholder communication.

### 15. Collaboration and Version Control
- Purpose: Managing code changes and collaborative work.
- Tools: Git, GitHub, GitLab.
- Practices: Version control, code reviews, collaborative development.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค2
Hi guys,

Many people charge too much to teach Excel, Power BI, SQL, Python & Tableau but my mission is to break down barriers. I have shared complete learning series to start your data analytics journey from scratch.

For those of you who are new to this channel, here are some quick links to navigate this channel easily.

Data Analyst Learning Plan ๐Ÿ‘‡
https://t.iss.one/sqlspecialist/752

Python Learning Plan ๐Ÿ‘‡
https://t.iss.one/sqlspecialist/749

Power BI Learning Plan ๐Ÿ‘‡
https://t.iss.one/sqlspecialist/745

SQL Learning Plan ๐Ÿ‘‡
https://t.iss.one/sqlspecialist/738

SQL Learning Series ๐Ÿ‘‡
https://t.iss.one/sqlspecialist/567

Excel Learning Series ๐Ÿ‘‡
https://t.iss.one/sqlspecialist/664

Power BI Learning Series ๐Ÿ‘‡
https://t.iss.one/sqlspecialist/768

Python Learning Series ๐Ÿ‘‡
https://t.iss.one/sqlspecialist/615

Tableau Essential Topics ๐Ÿ‘‡
https://t.iss.one/sqlspecialist/667

Best Data Analytics Resources ๐Ÿ‘‡
https://heylink.me/DataAnalytics

You can find more resources on Medium & Linkedin

Like for more โค๏ธ

Thanks to all who support our channel and share it with friends & loved ones. You guys are really amazing.

Hope it helps :)
โค5๐Ÿ‘1
One day or Day one. You decide.

Data Science edition.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜† : I will learn SQL.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Download mySQL Workbench.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will build my projects for my portfolio.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Look on Kaggle for a dataset to work on.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will master statistics.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Start the free Khan Academy Statistics and Probability course.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will learn to tell stories with data.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Install Tableau Public and create my first chart.

๐—ข๐—ป๐—ฒ ๐——๐—ฎ๐˜†: I will become a Data Scientist.
๐——๐—ฎ๐˜† ๐—ข๐—ป๐—ฒ: Update my resume and apply to some Data Science job postings.
โค3๐Ÿ‘1๐Ÿค”1๐Ÿ˜ข1
Data Science Cheat sheet 2.0

A helpful 5-page data science cheatsheet to assist with exam reviews, interview prep, and anything in-between. It covers over a semester of introductory machine learning, and is based on MIT's Machine Learning courses 6.867 and 15.072. The reader should have at least a basic understanding of statistics and linear algebra, though beginners may find this resource helpful as well.

Creator: Aaron Wang
Stars โญ๏ธ: 4.5k
Forked By: 645
https://github.com/aaronwangy/Data-Science-Cheatsheet

#datascience
โž–โž–โž–โž–โž–โž–โž–โž–โž–โž–โž–โž–โž–โž–
โค2
Machine Learning Basics for Data Analysts

Supervised Learning:

Definition: Models are trained on labeled data (e.g., regression, classification).

Example: Predicting house prices (regression) or classifying emails as spam or not (classification).


Unsupervised Learning:

Definition: Models are trained on unlabeled data to find hidden patterns (e.g., clustering, association).

Example: Grouping customers by purchasing behavior (clustering).


Feature Engineering:

Definition: The process of selecting, modifying, or creating new features from raw data to improve model performance.


Model Evaluation:

Definition: Assess model performance using metrics like accuracy, precision, recall, and F1-score for classification or RMSE for regression.


Cross-Validation:

Definition: Splitting data into multiple subsets to test the model's generalizability and avoid overfitting.


Algorithms:

Common Types: Linear regression, decision trees, k-nearest neighbors, and random forests.

Free Machine Learning Resources
๐Ÿ‘‡๐Ÿ‘‡

https://t.iss.one/datasciencefree

Like this post for more content like this ๐Ÿ‘โ™ฅ๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค3
๐ŸŽฏ Top 20 SQL Interview Questions You Must Know

SQL is one of the most in-demand skills for Data Analysts.

Here are 20 SQL interview questions that frequently appear in job interviews.

๐Ÿ“Œ Basic SQL Questions

1๏ธโƒฃ What is the difference between INNER JOIN and LEFT JOIN?
2๏ธโƒฃ How does GROUP BY work, and why do we use it?
3๏ธโƒฃ What is the difference between HAVING and WHERE?
4๏ธโƒฃ How do you remove duplicate rows from a table?
5๏ธโƒฃ What is the difference between RANK(), DENSE_RANK(), and ROW_NUMBER()?

๐Ÿ“Œ Intermediate SQL Questions

6๏ธโƒฃ How do you find the second highest salary from an Employee table?
7๏ธโƒฃ What is a Common Table Expression (CTE), and when should you use it?
8๏ธโƒฃ How do you identify missing values in a dataset using SQL?
9๏ธโƒฃ What is the difference between UNION and UNION ALL?
๐Ÿ”Ÿ How do you calculate a running total in SQL?

๐Ÿ“Œ Advanced SQL Questions

1๏ธโƒฃ1๏ธโƒฃ How does a self-join work? Give an example.
1๏ธโƒฃ2๏ธโƒฃ What is a window function, and how is it different from GROUP BY?
1๏ธโƒฃ3๏ธโƒฃ How do you detect and remove duplicate records in SQL?
1๏ธโƒฃ4๏ธโƒฃ Explain the difference between EXISTS and IN.
1๏ธโƒฃ5๏ธโƒฃ What is the purpose of COALESCE()?

๐Ÿ“Œ Real-World SQL Scenarios

1๏ธโƒฃ6๏ธโƒฃ How do you optimize a slow SQL query?
1๏ธโƒฃ7๏ธโƒฃ What is indexing in SQL, and how does it improve performance?
1๏ธโƒฃ8๏ธโƒฃ Write an SQL query to find customers who have placed more than 3 orders.
1๏ธโƒฃ9๏ธโƒฃ How do you calculate the percentage of total sales for each category?
2๏ธโƒฃ0๏ธโƒฃ What is the use of CASE statements in SQL?

React with โ™ฅ๏ธ if you want me to post the correct answers in next posts! โฌ‡๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค3
Common Mistakes Data Analysts Must Avoid โš ๏ธ๐Ÿ“Š

Even experienced analysts can fall into these traps. Avoid these mistakes to ensure accurate, impactful analysis!

1๏ธโƒฃ Ignoring Data Cleaning ๐Ÿงน
Messy data leads to misleading insights. Always check for missing values, duplicates, and inconsistencies before analysis.

2๏ธโƒฃ Relying Only on Averages ๐Ÿ“‰
Averages hide variability. Always check median, percentiles, and distributions for a complete picture.

3๏ธโƒฃ Confusing Correlation with Causation ๐Ÿ”—
Just because two things move together doesnโ€™t mean one causes the other. Validate assumptions before making decisions.

4๏ธโƒฃ Overcomplicating Visualizations ๐ŸŽจ
Too many colors, labels, or complex charts confuse your audience. Keep it simple, clear, and focused on key takeaways.

5๏ธโƒฃ Not Understanding Business Context ๐ŸŽฏ
Data without context is meaningless. Always ask: "What problem are we solving?" before diving into numbers.

6๏ธโƒฃ Ignoring Outliers Without Investigation ๐Ÿ”
Outliers can signal errors or valuable insights. Always analyze why they exist before deciding to remove them.

7๏ธโƒฃ Using Small Sample Sizes โš ๏ธ
Drawing conclusions from too little data leads to unreliable insights. Ensure your sample size is statistically significant.

8๏ธโƒฃ Failing to Communicate Insights Clearly ๐Ÿ—ฃ๏ธ
Great analysis means nothing if stakeholders donโ€™t understand it. Tell a story with dataโ€”donโ€™t just dump numbers.

9๏ธโƒฃ Not Keeping Up with Industry Trends ๐Ÿš€
Data tools and techniques evolve fast. Keep learning SQL, Python, Power BI, Tableau, and machine learning basics.

Avoid these mistakes, and youโ€™ll stand out as a reliable data analyst!

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
โค4
Statistics Cheatsheet For Data Science
โค3
โŒจ๏ธ Grammar Correction using Python
โค3
Important Machine Learning Algorithms ๐Ÿ‘†
โค5