Data Science Projects
52.3K subscribers
379 photos
1 video
57 files
334 links
Perfect channel for Data Scientists

Learn Python, AI, R, Machine Learning, Data Science and many more

Admin: @love_data
Download Telegram
Data Science Learning Plan

Step 1: Mathematics for Data Science (Statistics, Probability, Linear Algebra)

Step 2: Python for Data Science (Basics and Libraries)

Step 3: Data Manipulation and Analysis (Pandas, NumPy)

Step 4: Data Visualization (Matplotlib, Seaborn, Plotly)

Step 5: Databases and SQL for Data Retrieval

Step 6: Introduction to Machine Learning (Supervised and Unsupervised Learning)

Step 7: Data Cleaning and Preprocessing

Step 8: Feature Engineering and Selection

Step 9: Model Evaluation and Tuning

Step 10: Deep Learning (Neural Networks, TensorFlow, Keras)

Step 11: Working with Big Data (Hadoop, Spark)

Step 12: Building Data Science Projects and Portfolio

Data Science Interview Resources
๐Ÿ‘‡๐Ÿ‘‡
https://t.iss.one/DataScienceInterviews

Like for more ๐Ÿ˜„
โค3๐Ÿฅฐ1
If I need to teach someone data analytics from the basics, here is my strategy:

1. I will first remove the fear of tools from that person

2. i will start with the excel because it looks familiar and easy to use

3. I put more emphasis on projects like at least 5 to 6 with the excel. because in industry you learn by doing things

4. I will release the person from the tutorial hell and move into a more action oriented person

5. Then I move to the sql because every job wants it , even with the ai tools you need strong understanding for it if you are going to use it daily

6. After strong understanding, I will push the person to solve 100 to 150 Sql problems from basic to advance

7. It helps the person to develop the analytical thinking

8. Then I push the person to solve 3 case studies as it helps how we pull the data in the real life

9. Then I move the person to power bi to do again 5 projects by using either sql or excel files

10. Now the fear is removed.

11. Now I push the person to solve unguided challenges and present them by video recording as it increases the problem solving, communication and data story telling skills

12. Further it helps you to clear case study round given by most of the companies

13. Now i help the person how to present them in resume and also how these tools are used in real world.

14. You know the interesting fact, all of above is present free in youtube and I also mentor the people through existing youtube videos.

15. But people stuck in the tutorial hell, loose motivation , stay confused that they are either in the right direction or not.

16. As a personal mentor , I help them to get of the tutorial hell, set them in the right direction and they stay motivated when they start to see the difference before amd after mentorship

I have curated best 80+ top-notch Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://topmate.io/analyst/861634

Hope this helps you ๐Ÿ˜Š
โค2
Data Science is very vast field.

I saw one linkedin profile today with below skills ๐Ÿ‘‡

Technical Skills:
Data Manipulation: Numpy, Pandas, BeautifulSoup, PySpark
Data Visualization: EDA- Matplotlib, Seaborn, Plotly, Tableau, PowerBI
Machine Learning: Scikit-Learn, TimeSeries Analysis
MLOPs: Gensinms, Github Actions, Gitlab CI/CD, mlflows, WandB, comet
Deep Learning: PyTorch, TensorFlow, Keras
Natural Language Processing: NLTK, NER, Spacy, word2vec, Kmeans, KNN, DBscan
Computer Vision: openCV, Yolo-V5, unet, cnn, resnet
Version Control: Git, Github, Gitlab
Database: SQL, NOSQL, Databricks
Web Frameworks: Streamlit, Flask, FastAPI, Streamlit
Generative AI - HuggingFace, LLM, Langchain, GPT-3.5, and GPT-4
Project Management and collaboration tool- JIRA, Confluence
Deployment- AWS, GCP, Docker, Google Vertex AI, Data Robot AI, Big ML, Microsoft Azure

How many of them do you have?
โค1
Roadmap to become NLP Expert in 2025 โœ…
โค2
Preparing for a machine learning interview as a data analyst is a great step.

Here are some common machine learning interview questions :-

1. Explain the steps involved in a machine learning project lifecycle.

2. What is the difference between supervised and unsupervised learning? Give examples of each.

3. What evaluation metrics would you use to assess the performance of a regression model?

4. What is overfitting and how can you prevent it?

5. Describe the bias-variance tradeoff.

6. What is cross-validation, and why is it important in machine learning?

7. What are some feature selection techniques you are familiar with?

8.What are the assumptions of linear regression?

9. How does regularization help in linear models?

10. Explain the difference between classification and regression.

11. What are some common algorithms used for dimensionality reduction?

12. Describe how a decision tree works.

13. What are ensemble methods, and why are they useful?

14. How do you handle missing or corrupted data in a dataset?

15. What are the different kernels used in Support Vector Machines (SVM)?


These questions cover a range of fundamental concepts and techniques in machine learning that are important for a data scientist role.
Good luck with your interview preparation!


Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
โค2
Machine Learning โ€“ Essential Concepts ๐Ÿš€

1๏ธโƒฃ Types of Machine Learning

Supervised Learning โ€“ Uses labeled data to train models.

Examples: Linear Regression, Decision Trees, Random Forest, SVM


Unsupervised Learning โ€“ Identifies patterns in unlabeled data.

Examples: Clustering (K-Means, DBSCAN), PCA


Reinforcement Learning โ€“ Models learn through rewards and penalties.

Examples: Q-Learning, Deep Q Networks



2๏ธโƒฃ Key Algorithms

Regression โ€“ Predicts continuous values (Linear Regression, Ridge, Lasso).

Classification โ€“ Categorizes data into classes (Logistic Regression, Decision Tree, SVM, Naรฏve Bayes).

Clustering โ€“ Groups similar data points (K-Means, Hierarchical Clustering, DBSCAN).

Dimensionality Reduction โ€“ Reduces the number of features (PCA, t-SNE, LDA).


3๏ธโƒฃ Model Training & Evaluation

Train-Test Split โ€“ Dividing data into training and testing sets.

Cross-Validation โ€“ Splitting data multiple times for better accuracy.

Metrics โ€“ Evaluating models with RMSE, Accuracy, Precision, Recall, F1-Score, ROC-AUC.


4๏ธโƒฃ Feature Engineering

Handling missing data (mean imputation, dropna()).

Encoding categorical variables (One-Hot Encoding, Label Encoding).

Feature Scaling (Normalization, Standardization).


5๏ธโƒฃ Overfitting & Underfitting

Overfitting โ€“ Model learns noise, performs well on training but poorly on test data.

Underfitting โ€“ Model is too simple and fails to capture patterns.

Solution: Regularization (L1, L2), Hyperparameter Tuning.


6๏ธโƒฃ Ensemble Learning

Combining multiple models to improve performance.

Bagging (Random Forest)

Boosting (XGBoost, Gradient Boosting, AdaBoost)



7๏ธโƒฃ Deep Learning Basics

Neural Networks (ANN, CNN, RNN).

Activation Functions (ReLU, Sigmoid, Tanh).

Backpropagation & Gradient Descent.


8๏ธโƒฃ Model Deployment

Deploy models using Flask, FastAPI, or Streamlit.

Model versioning with MLflow.

Cloud deployment (AWS SageMaker, Google Vertex AI).

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
โค2๐Ÿ‘2
Essential Data Science Concepts Everyone Should Know:

1. Data Types and Structures:

โ€ข Categorical: Nominal (unordered, e.g., colors) and Ordinal (ordered, e.g., education levels)

โ€ข Numerical: Discrete (countable, e.g., number of children) and Continuous (measurable, e.g., height)

โ€ข Data Structures: Arrays, Lists, Dictionaries, DataFrames (for organizing and manipulating data)

2. Descriptive Statistics:

โ€ข Measures of Central Tendency: Mean, Median, Mode (describing the typical value)

โ€ข Measures of Dispersion: Variance, Standard Deviation, Range (describing the spread of data)

โ€ข Visualizations: Histograms, Boxplots, Scatterplots (for understanding data distribution)

3. Probability and Statistics:

โ€ข Probability Distributions: Normal, Binomial, Poisson (modeling data patterns)

โ€ข Hypothesis Testing: Formulating and testing claims about data (e.g., A/B testing)

โ€ข Confidence Intervals: Estimating the range of plausible values for a population parameter

4. Machine Learning:

โ€ข Supervised Learning: Regression (predicting continuous values) and Classification (predicting categories)

โ€ข Unsupervised Learning: Clustering (grouping similar data points) and Dimensionality Reduction (simplifying data)

โ€ข Model Evaluation: Accuracy, Precision, Recall, F1-score (assessing model performance)

5. Data Cleaning and Preprocessing:

โ€ข Missing Value Handling: Imputation, Deletion (dealing with incomplete data)

โ€ข Outlier Detection and Removal: Identifying and addressing extreme values

โ€ข Feature Engineering: Creating new features from existing ones (e.g., combining variables)

6. Data Visualization:

โ€ข Types of Charts: Bar charts, Line charts, Pie charts, Heatmaps (for communicating insights visually)

โ€ข Principles of Effective Visualization: Clarity, Accuracy, Aesthetics (for conveying information effectively)

7. Ethical Considerations in Data Science:

โ€ข Data Privacy and Security: Protecting sensitive information

โ€ข Bias and Fairness: Ensuring algorithms are unbiased and fair

8. Programming Languages and Tools:

โ€ข Python: Popular for data science with libraries like NumPy, Pandas, Scikit-learn

โ€ข R: Statistical programming language with strong visualization capabilities

โ€ข SQL: For querying and manipulating data in databases

9. Big Data and Cloud Computing:

โ€ข Hadoop and Spark: Frameworks for processing massive datasets

โ€ข Cloud Platforms: AWS, Azure, Google Cloud (for storing and analyzing data)

10. Domain Expertise:

โ€ข Understanding the Data: Knowing the context and meaning of data is crucial for effective analysis

โ€ข Problem Framing: Defining the right questions and objectives for data-driven decision making

Bonus:

โ€ข Data Storytelling: Communicating insights and findings in a clear and engaging manner

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค1๐Ÿ‘1
๐—›๐—ผ๐˜„ ๐˜๐—ผ ๐—•๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ ๐—๐—ผ๐—ฏ-๐—ฅ๐—ฒ๐—ฎ๐—ฑ๐˜† ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฆ๐—ฐ๐—ฟ๐—ฎ๐˜๐—ฐ๐—ต (๐—˜๐˜ƒ๐—ฒ๐—ป ๐—ถ๐—ณ ๐—ฌ๐—ผ๐˜‚โ€™๐—ฟ๐—ฒ ๐—ฎ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ!) ๐Ÿ“Š

Wanna break into data science but feel overwhelmed by too many courses, buzzwords, and conflicting advice? Youโ€™re not alone.

Hereโ€™s the truth: You donโ€™t need a PhD or 10 certifications. You just need the right skills in the right order.

Let me show you a proven 5-step roadmap that actually works for landing data science roles (even entry-level) ๐Ÿ‘‡

๐Ÿ”น Step 1: Learn the Core Tools (This is Your Foundation)

Focus on 3 key tools firstโ€”donโ€™t overcomplicate:

โœ… Python โ€“ NumPy, Pandas, Matplotlib, Seaborn
โœ… SQL โ€“ Joins, Aggregations, Window Functions
โœ… Excel โ€“ VLOOKUP, Pivot Tables, Data Cleaning

๐Ÿ”น Step 2: Master Data Cleaning & EDA (Your Real-World Skill)

Real data is messy. Learn how to:

โœ… Handle missing data, outliers, and duplicates
โœ… Visualize trends using Matplotlib/Seaborn
โœ… Use groupby(), merge(), and pivot_table()

๐Ÿ”น Step 3: Learn ML Basics (No Fancy Math Needed)

Stick to core algorithms first:

โœ… Linear & Logistic Regression
โœ… Decision Trees & Random Forest
โœ… KMeans Clustering + Model Evaluation Metrics

๐Ÿ”น Step 4: Build Projects That Prove Your Skills

One strong project > 5 courses. Create:

โœ… Sales Forecasting using Time Series
โœ… Movie Recommendation System
โœ… HR Analytics Dashboard using Python + Excel
๐Ÿ“ Upload them on GitHub. Add visuals, write a good README, and share on LinkedIn.

๐Ÿ”น Step 5: Prep for the Job Hunt (Your Personal Brand Matters)

โœ… Create a strong LinkedIn profile with keywords like โ€œAspiring Data Scientist | Python | SQL | MLโ€
โœ… Add GitHub link + Highlight your Projects
โœ… Follow Data Science mentors, engage with content, and network for referrals

๐ŸŽฏ No shortcuts. Just consistent baby steps.

Every pro data scientist once started as a beginner. Stay curious, stay consistent.

Free Data Science Resources: https://whatsapp.com/channel/0029VauCKUI6WaKrgTHrRD0i

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค2๐Ÿ‘1
Data people, repeat after me:

Excel is not a database.
Excel is not a database.
Excel is not a database.
Excel is not a database.
Excel is not a database.
Excel is not a database.
Excel is not a database.
Excel is not a database.
Excel is not a database.
Excel is not a database.
โค9๐Ÿ˜6๐Ÿคก3๐Ÿคฃ3
Advanced Skills to Elevate Your Data Analytics Career

1๏ธโƒฃ SQL Optimization & Performance Tuning

๐Ÿš€ Learn indexing, query optimization, and execution plans to handle large datasets efficiently.

2๏ธโƒฃ Machine Learning Basics

๐Ÿค– Understand supervised and unsupervised learning, feature engineering, and model evaluation to enhance analytical capabilities.

3๏ธโƒฃ Big Data Technologies

๐Ÿ—๏ธ Explore Spark, Hadoop, and cloud platforms like AWS, Azure, or Google Cloud for large-scale data processing.

4๏ธโƒฃ Data Engineering Skills

โš™๏ธ Learn ETL pipelines, data warehousing, and workflow automation to streamline data processing.

5๏ธโƒฃ Advanced Python for Analytics

๐Ÿ Master libraries like Scikit-Learn, TensorFlow, and Statsmodels for predictive analytics and automation.

6๏ธโƒฃ A/B Testing & Experimentation

๐ŸŽฏ Design and analyze controlled experiments to drive data-driven decision-making.

7๏ธโƒฃ Dashboard Design & UX

๐ŸŽจ Build interactive dashboards with Power BI, Tableau, or Looker that enhance user experience.

8๏ธโƒฃ Cloud Data Analytics

โ˜๏ธ Work with cloud databases like BigQuery, Snowflake, and Redshift for scalable analytics.

9๏ธโƒฃ Domain Expertise

๐Ÿ’ผ Gain industry-specific knowledge (e.g., finance, healthcare, e-commerce) to provide more relevant insights.

๐Ÿ”Ÿ Soft Skills & Leadership

๐Ÿ’ก Develop stakeholder management, storytelling, and mentorship skills to advance in your career.

Hope it helps :)

#dataanalytics
๐Ÿ‘2โค1
Step-by-step guide to become a Data Analyst in 2025โ€”๐Ÿ“Š

1. Learn the Fundamentals:
Start with Excel, basic statistics, and data visualization concepts.

2. Pick Up Key Tools & Languages:
Master SQL, Python (or R), and data visualization tools like Tableau or Power BI.

3. Get Formal Education or Certification:
A bachelorโ€™s degree in a relevant field (like Computer Science, Math, or Economics) helps, but you can also do online courses or certifications in data analytics.

4. Build Hands-on Experience:
Work on real-world projectsโ€”use Kaggle datasets, internships, or freelance gigs to practice data cleaning, analysis, and visualization.

5. Create a Portfolio:
Showcase your projects on GitHub or a personal website. Include dashboards, reports, and code samples.

6. Develop Soft Skills:
Focus on communication, problem-solving, teamwork, and attention to detailโ€”these are just as important as technical skills.

7. Apply for Entry-Level Jobs:
Look for roles like โ€œJunior Data Analystโ€ or โ€œBusiness Analyst.โ€ Tailor your resume to highlight your skills and portfolio.

8. Keep Learning:
Stay updated with new tools (like AI-driven analytics), trends, and advanced topics such as machine learning or domain-specific analytics.

React โค๏ธ for more
โค3๐Ÿ‘1
โœ…๐Ÿ“-๐’๐ญ๐ž๐ฉ ๐‘๐จ๐š๐๐ฆ๐š๐ฉ ๐ญ๐จ ๐’๐ฐ๐ข๐ญ๐œ๐ก ๐ข๐ง๐ญ๐จ ๐ญ๐ก๐ž ๐ƒ๐š๐ญ๐š ๐€๐ง๐š๐ฅ๐ฒ๐ญ๐ข๐œ๐ฌ ๐…๐ข๐ž๐ฅ๐โœ…

๐Ÿ’โ€โ™€๏ธ๐๐ฎ๐ข๐ฅ๐ ๐Š๐ž๐ฒ ๐’๐ค๐ข๐ฅ๐ฅ๐ฌ: Focus on core skillsโ€”Excel, SQL, Power BI, and Python.

๐Ÿ’โ€โ™€๏ธ๐‡๐š๐ง๐๐ฌ-๐Ž๐ง ๐๐ซ๐จ๐ฃ๐ž๐œ๐ญ๐ฌ: Apply your skills to real-world data sets. Projects like sales analysis or customer segmentation show your practical experience. You can find projects on Youtube.

๐Ÿ’โ€โ™€๏ธ๐…๐ข๐ง๐ ๐š ๐Œ๐ž๐ง๐ญ๐จ๐ซ: Connect with someone experienced in data analytics for guidance(like me ๐Ÿ˜…). They can provide valuable insights, feedback, and keep you on track.

๐Ÿ’โ€โ™€๏ธ๐‚๐ซ๐ž๐š๐ญ๐ž ๐๐จ๐ซ๐ญ๐Ÿ๐จ๐ฅ๐ข๐จ: Compile your projects in a portfolio or on GitHub. A solid portfolio catches a recruiterโ€™s eye.

๐Ÿ’โ€โ™€๏ธ๐๐ซ๐š๐œ๐ญ๐ข๐œ๐ž ๐Ÿ๐จ๐ซ ๐ˆ๐ง๐ญ๐ž๐ซ๐ฏ๐ข๐ž๐ฐ๐ฌ: Practice SQL queries and Python coding challenges on Hackerrank & LeetCode. Strengthening your problem-solving skills will prepare you for interviews.
โค1
The Only SQL Cheatsheet Youโ€™ll Ever Need - 2025 Edition
โค4
Important questions to ace your machine learning interview with an approach to answer:

1. Machine Learning Project Lifecycle:
   - Define the problem
   - Gather and preprocess data
   - Choose a model and train it
   - Evaluate model performance
   - Tune and optimize the model
   - Deploy and maintain the model

2. Supervised vs Unsupervised Learning:
   - Supervised Learning: Uses labeled data for training (e.g., predicting house prices from features).
   - Unsupervised Learning: Uses unlabeled data to find patterns or groupings (e.g., clustering customer segments).

3. Evaluation Metrics for Regression:
   - Mean Absolute Error (MAE)
   - Mean Squared Error (MSE)
   - Root Mean Squared Error (RMSE)
   - R-squared (coefficient of determination)

4. Overfitting and Prevention:
   - Overfitting: Model learns the noise instead of the underlying pattern.
   - Prevention: Use simpler models, cross-validation, regularization.

5. Bias-Variance Tradeoff:
   - Balancing error due to bias (underfitting) and variance (overfitting) to find an optimal model complexity.

6. Cross-Validation:
   - Technique to assess model performance by splitting data into multiple subsets for training and validation.

7. Feature Selection Techniques:
   - Filter methods (e.g., correlation analysis)
   - Wrapper methods (e.g., recursive feature elimination)
   - Embedded methods (e.g., Lasso regularization)

8. Assumptions of Linear Regression:
   - Linearity
   - Independence of errors
   - Homoscedasticity (constant variance)
   - No multicollinearity

9. Regularization in Linear Models:
   - Adds a penalty term to the loss function to prevent overfitting by shrinking coefficients.

10. Classification vs Regression:
    - Classification: Predicts a categorical outcome (e.g., class labels).
    - Regression: Predicts a continuous numerical outcome (e.g., house price).

11. Dimensionality Reduction Algorithms:
    - Principal Component Analysis (PCA)
    - t-Distributed Stochastic Neighbor Embedding (t-SNE)

12. Decision Tree:
    - Tree-like model where internal nodes represent features, branches represent decisions, and leaf nodes represent outcomes.

13. Ensemble Methods:
    - Combine predictions from multiple models to improve accuracy (e.g., Random Forest, Gradient Boosting).

14. Handling Missing or Corrupted Data:
    - Imputation (e.g., mean substitution)
    - Removing rows or columns with missing data
    - Using algorithms robust to missing values

15. Kernels in Support Vector Machines (SVM):
    - Linear kernel
    - Polynomial kernel
    - Radial Basis Function (RBF) kernel

Data Science Interview Resources
๐Ÿ‘‡๐Ÿ‘‡
https://topmate.io/coding/914624

Like for more ๐Ÿ˜„
โค4๐Ÿ”ฅ1
10 Machine Learning Concepts You Must Know

1. Supervised vs Unsupervised Learning

Supervised Learning involves training a model on labeled data (input-output pairs). Examples: Linear Regression, Classification.

Unsupervised Learning deals with unlabeled data. The model tries to find hidden patterns or groupings. Examples: Clustering (K-Means), Dimensionality Reduction (PCA).


2. Bias-Variance Tradeoff

Bias is the error due to overly simplistic assumptions in the learning algorithm.

Variance is the error due to excessive sensitivity to small fluctuations in the training data.

Goal: Minimize both for optimal model performance. High bias โ†’ underfitting; High variance โ†’ overfitting.


3. Feature Engineering

The process of selecting, transforming, and creating variables (features) to improve model performance.

Examples: Normalization, encoding categorical variables, creating interaction terms, handling missing data.


4. Train-Test Split & Cross-Validation

Train-Test Split divides the dataset into training and testing subsets to evaluate model generalization.

Cross-Validation (e.g., k-fold) provides a more reliable evaluation by splitting data into k subsets and training/testing on each.


5. Confusion Matrix

A performance evaluation tool for classification models showing TP, TN, FP, FN.

From it, we derive:

Accuracy = (TP + TN) / Total

Precision = TP / (TP + FP)

Recall = TP / (TP + FN)

F1 Score = 2 * (Precision * Recall) / (Precision + Recall)



6. Gradient Descent

An optimization algorithm used to minimize the cost/loss function by iteratively updating model parameters in the direction of the negative gradient.

Variants: Batch GD, Stochastic GD (SGD), Mini-batch GD.


7. Regularization (L1/L2)

Techniques to prevent overfitting by adding a penalty term to the loss function.

L1 (Lasso): Adds absolute value of coefficients, can shrink some to zero (feature selection).

L2 (Ridge): Adds square of coefficients, tends to shrink but not eliminate coefficients.


8. Decision Trees & Random Forests

Decision Tree: A tree-structured model that splits data based on features. Easy to interpret.

Random Forest: An ensemble of decision trees; reduces overfitting and improves accuracy.


9. Support Vector Machines (SVM)

A supervised learning algorithm used for classification. It finds the optimal hyperplane that separates classes.

Uses kernels (linear, polynomial, RBF) to handle non-linearly separable data.


10. Neural Networks

Inspired by the human brain, these consist of layers of interconnected neurons.

Deep Neural Networks (DNNs) can model complex patterns.

The backbone of deep learning applications like image recognition, NLP, etc.

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค5