Here are some essential SQL tips for beginners ππ
β Primary Key = Unique Key + Not Null constraint
β To perform case insensitive search use UPPER() function ex. UPPER(customer_name) LIKE βA%Aβ
β LIKE operator is for string data type
β COUNT(*), COUNT(1), COUNT(0) all are same
β All aggregate functions ignore the NULL values
β Aggregate functions MIN, MAX, SUM, AVG, COUNT are for int data type whereas STRING_AGG is for string data type
β For row level filtration use WHERE and aggregate level filtration use HAVING
β UNION ALL will include duplicates where as UNION excludes duplicates
β If the results will not have any duplicates, use UNION ALL instead of UNION
β We have to alias the subquery if we are using the columns in the outer select query
β Subqueries can be used as output with NOT IN condition.
β CTEs look better than subqueries. Performance wise both are same.
β When joining two tables , if one table has only one value then we can use 1=1 as a condition to join the tables. This will be considered as CROSS JOIN.
β Window functions work at ROW level.
β The difference between RANK() and DENSE_RANK() is that RANK() skips the rank if the values are the same.
β EXISTS works on true/false conditions. If the query returns at least one value, the condition is TRUE. All the records corresponding to the conditions are returned.
Like for more ππ
β Primary Key = Unique Key + Not Null constraint
β To perform case insensitive search use UPPER() function ex. UPPER(customer_name) LIKE βA%Aβ
β LIKE operator is for string data type
β COUNT(*), COUNT(1), COUNT(0) all are same
β All aggregate functions ignore the NULL values
β Aggregate functions MIN, MAX, SUM, AVG, COUNT are for int data type whereas STRING_AGG is for string data type
β For row level filtration use WHERE and aggregate level filtration use HAVING
β UNION ALL will include duplicates where as UNION excludes duplicates
β If the results will not have any duplicates, use UNION ALL instead of UNION
β We have to alias the subquery if we are using the columns in the outer select query
β Subqueries can be used as output with NOT IN condition.
β CTEs look better than subqueries. Performance wise both are same.
β When joining two tables , if one table has only one value then we can use 1=1 as a condition to join the tables. This will be considered as CROSS JOIN.
β Window functions work at ROW level.
β The difference between RANK() and DENSE_RANK() is that RANK() skips the rank if the values are the same.
β EXISTS works on true/false conditions. If the query returns at least one value, the condition is TRUE. All the records corresponding to the conditions are returned.
Like for more ππ
β€2
Complete Roadmap to learn Generative AI in 2 months ππ
Weeks 1-2: Foundations
1. Learn Basics of Python: If not familiar, grasp the fundamentals of Python, a widely used language in AI.
2. Understand Linear Algebra and Calculus: Brush up on basic linear algebra and calculus as they form the foundation of machine learning.
Weeks 3-4: Machine Learning Basics
1. Study Machine Learning Fundamentals: Understand concepts like supervised learning, unsupervised learning, and evaluation metrics.
2. Get Familiar with TensorFlow or PyTorch: Choose one deep learning framework and learn its basics.
Weeks 5-6: Deep Learning
1. Neural Networks: Dive into neural networks, understanding architectures, activation functions, and training processes.
2. CNNs and RNNs: Learn Convolutional Neural Networks (CNNs) for image data and Recurrent Neural Networks (RNNs) for sequential data.
Weeks 7-8: Generative Models
1. Understand Generative Models: Study the theory behind generative models, focusing on GANs (Generative Adversarial Networks) and VAEs (Variational Autoencoders).
2. Hands-On Projects: Implement small generative projects to solidify your understanding. Experimenting with generative models will give you a deeper understanding of how they work. You can use platforms such as Google's Colab or Kaggle to experiment with different types of generative models.
Additional Tips:
- Read Research Papers: Explore seminal papers on GANs and VAEs to gain a deeper insight into their workings.
- Community Engagement: Join AI communities on platforms like Reddit or Stack Overflow to ask questions and learn from others.
Pro Tip: Roadmap won't help unless you start working on it consistently. Start working on projects as early as possible.
2 months are good as a starting point to get grasp the basics of Generative AI but mastering it is very difficult as AI keeps evolving every day.
Best Resources to learn Generative AI ππ
Learn Python for Free
Prompt Engineering Course
Prompt Engineering Guide
Data Science Course
Google Cloud Generative AI Path
Unlock the power of Generative AI Models
Machine Learning with Python Free Course
Deep Learning Nanodegree Program with Real-world Projects
Join @free4unow_backup for more free courses
ENJOY LEARNINGππ
Weeks 1-2: Foundations
1. Learn Basics of Python: If not familiar, grasp the fundamentals of Python, a widely used language in AI.
2. Understand Linear Algebra and Calculus: Brush up on basic linear algebra and calculus as they form the foundation of machine learning.
Weeks 3-4: Machine Learning Basics
1. Study Machine Learning Fundamentals: Understand concepts like supervised learning, unsupervised learning, and evaluation metrics.
2. Get Familiar with TensorFlow or PyTorch: Choose one deep learning framework and learn its basics.
Weeks 5-6: Deep Learning
1. Neural Networks: Dive into neural networks, understanding architectures, activation functions, and training processes.
2. CNNs and RNNs: Learn Convolutional Neural Networks (CNNs) for image data and Recurrent Neural Networks (RNNs) for sequential data.
Weeks 7-8: Generative Models
1. Understand Generative Models: Study the theory behind generative models, focusing on GANs (Generative Adversarial Networks) and VAEs (Variational Autoencoders).
2. Hands-On Projects: Implement small generative projects to solidify your understanding. Experimenting with generative models will give you a deeper understanding of how they work. You can use platforms such as Google's Colab or Kaggle to experiment with different types of generative models.
Additional Tips:
- Read Research Papers: Explore seminal papers on GANs and VAEs to gain a deeper insight into their workings.
- Community Engagement: Join AI communities on platforms like Reddit or Stack Overflow to ask questions and learn from others.
Pro Tip: Roadmap won't help unless you start working on it consistently. Start working on projects as early as possible.
2 months are good as a starting point to get grasp the basics of Generative AI but mastering it is very difficult as AI keeps evolving every day.
Best Resources to learn Generative AI ππ
Learn Python for Free
Prompt Engineering Course
Prompt Engineering Guide
Data Science Course
Google Cloud Generative AI Path
Unlock the power of Generative AI Models
Machine Learning with Python Free Course
Deep Learning Nanodegree Program with Real-world Projects
Join @free4unow_backup for more free courses
ENJOY LEARNINGππ
β€2
Artificial Intelligence isn't easy!
Itβs the cutting-edge field that enables machines to think, learn, and act like humans.
To truly master Artificial Intelligence, focus on these key areas:
0. Understanding AI Fundamentals: Learn the basic concepts of AI, including search algorithms, knowledge representation, and decision trees.
1. Mastering Machine Learning: Since ML is a core part of AI, dive into supervised, unsupervised, and reinforcement learning techniques.
2. Exploring Deep Learning: Learn neural networks, CNNs, RNNs, and GANs to handle tasks like image recognition, NLP, and generative models.
3. Working with Natural Language Processing (NLP): Understand how machines process human language for tasks like sentiment analysis, translation, and chatbots.
4. Learning Reinforcement Learning: Study how agents learn by interacting with environments to maximize rewards (e.g., in gaming or robotics).
5. Building AI Models: Use popular frameworks like TensorFlow, PyTorch, and Keras to build, train, and evaluate your AI models.
6. Ethics and Bias in AI: Understand the ethical considerations and challenges of implementing AI responsibly, including fairness, transparency, and bias.
7. Computer Vision: Master image processing techniques, object detection, and recognition algorithms for AI-powered visual applications.
8. AI for Robotics: Learn how AI helps robots navigate, sense, and interact with the physical world.
9. Staying Updated with AI Research: AI is an ever-evolving fieldβstay on top of cutting-edge advancements, papers, and new algorithms.
Artificial Intelligence is a multidisciplinary field that blends computer science, mathematics, and creativity.
π‘ Embrace the journey of learning and building systems that can reason, understand, and adapt.
β³ With dedication, hands-on practice, and continuous learning, youβll contribute to shaping the future of intelligent systems!
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/datasciencefun
Like if you need similar content ππ
Hope this helps you π
Itβs the cutting-edge field that enables machines to think, learn, and act like humans.
To truly master Artificial Intelligence, focus on these key areas:
0. Understanding AI Fundamentals: Learn the basic concepts of AI, including search algorithms, knowledge representation, and decision trees.
1. Mastering Machine Learning: Since ML is a core part of AI, dive into supervised, unsupervised, and reinforcement learning techniques.
2. Exploring Deep Learning: Learn neural networks, CNNs, RNNs, and GANs to handle tasks like image recognition, NLP, and generative models.
3. Working with Natural Language Processing (NLP): Understand how machines process human language for tasks like sentiment analysis, translation, and chatbots.
4. Learning Reinforcement Learning: Study how agents learn by interacting with environments to maximize rewards (e.g., in gaming or robotics).
5. Building AI Models: Use popular frameworks like TensorFlow, PyTorch, and Keras to build, train, and evaluate your AI models.
6. Ethics and Bias in AI: Understand the ethical considerations and challenges of implementing AI responsibly, including fairness, transparency, and bias.
7. Computer Vision: Master image processing techniques, object detection, and recognition algorithms for AI-powered visual applications.
8. AI for Robotics: Learn how AI helps robots navigate, sense, and interact with the physical world.
9. Staying Updated with AI Research: AI is an ever-evolving fieldβstay on top of cutting-edge advancements, papers, and new algorithms.
Artificial Intelligence is a multidisciplinary field that blends computer science, mathematics, and creativity.
π‘ Embrace the journey of learning and building systems that can reason, understand, and adapt.
β³ With dedication, hands-on practice, and continuous learning, youβll contribute to shaping the future of intelligent systems!
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/datasciencefun
Like if you need similar content ππ
Hope this helps you π
β€4
Recent Interview Question for Data Analyst Role
Question 1) You have two tables:
Employee:-
Columns: EID (Employee ID), ESalary (Employee Salary)
empdetails:-
Columns: EID (Employee ID), EDOB (Employee Date of Birth)
Your task is to:
1) Identify all employees whose salary (ESalary) is an odd number?
2) Retrieve the date of birth (EDOB) for these employees from the empdetails table.
How would you write a SQL query to achieve this?
SELECT e.EID, ed.EDOB
FROM (
SELECT EID
FROM Employee
WHERE ESalary % 2 <> 0
) e
JOIN empdetails ed ON e.EID = ed.EID;
Explanation of the query :-
Filter Employees with Odd Salaries:
The subquery SELECT EID FROM Employee WHERE ESalary % 2 <> 0 filters out Employee IDs (EID) where the salary (ESalary) is an odd number. The modulo operator % checks if ESalary divided by 2 leaves a remainder (<>0).
Merge with empdetails:
The main query then takes the filtered Employee IDs from the subquery and performs a join with the empdetails table using the EID column. This retrieves the date of birth (EDOB) for these employees.
Join this channel to learn everything about Data Analytics π
https://t.iss.one/sqlspecialist
Hope this helps you π
Question 1) You have two tables:
Employee:-
Columns: EID (Employee ID), ESalary (Employee Salary)
empdetails:-
Columns: EID (Employee ID), EDOB (Employee Date of Birth)
Your task is to:
1) Identify all employees whose salary (ESalary) is an odd number?
2) Retrieve the date of birth (EDOB) for these employees from the empdetails table.
How would you write a SQL query to achieve this?
SELECT e.EID, ed.EDOB
FROM (
SELECT EID
FROM Employee
WHERE ESalary % 2 <> 0
) e
JOIN empdetails ed ON e.EID = ed.EID;
Explanation of the query :-
Filter Employees with Odd Salaries:
The subquery SELECT EID FROM Employee WHERE ESalary % 2 <> 0 filters out Employee IDs (EID) where the salary (ESalary) is an odd number. The modulo operator % checks if ESalary divided by 2 leaves a remainder (<>0).
Merge with empdetails:
The main query then takes the filtered Employee IDs from the subquery and performs a join with the empdetails table using the EID column. This retrieves the date of birth (EDOB) for these employees.
Join this channel to learn everything about Data Analytics π
https://t.iss.one/sqlspecialist
Hope this helps you π
β€4
Machine Learning Algorithm:
1. Linear Regression:
- Imagine drawing a straight line on a graph to show the relationship between two things, like how the height of a plant might relate to the amount of sunlight it gets.
2. Decision Trees:
- Think of a game where you have to answer yes or no questions to find an object. It's like a flowchart helping you decide what the object is based on your answers.
3. Random Forest:
- Picture a group of friends making decisions together. Random Forest is like combining the opinions of many friends to make a more reliable decision.
4. Support Vector Machines (SVM):
- Imagine drawing a line to separate different types of things, like putting all red balls on one side and blue balls on the other, with the line in between them.
5. k-Nearest Neighbors (kNN):
- Pretend you have a collection of toys, and you want to find out which toys are similar to a new one. kNN is like asking your friends which toys are closest in looks to the new one.
6. Naive Bayes:
- Think of a detective trying to solve a mystery. Naive Bayes is like the detective making guesses based on the probability of certain clues leading to the culprit.
7. K-Means Clustering:
- Imagine sorting your toys into different groups based on their similarities, like putting all the cars in one group and all the dolls in another.
8. Hierarchical Clustering:
- Picture organizing your toys into groups, and then those groups into bigger groups. It's like creating a family tree for your toys based on their similarities.
9. Principal Component Analysis (PCA):
- Suppose you have many different measurements for your toys, and PCA helps you find the most important ones to understand and compare them easily.
10. Neural Networks (Deep Learning):
- Think of a robot brain with lots of interconnected parts. Each part helps the robot understand different aspects of things, like recognizing shapes or colors.
11. Gradient Boosting algorithms:
- Imagine you are trying to reach the top of a hill, and each time you take a step, you learn from the mistakes of the previous step to get closer to the summit. XGBoost and LightGBM are like smart ways of learning from those steps.
Share with credits: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
ENJOY LEARNING ππ
1. Linear Regression:
- Imagine drawing a straight line on a graph to show the relationship between two things, like how the height of a plant might relate to the amount of sunlight it gets.
2. Decision Trees:
- Think of a game where you have to answer yes or no questions to find an object. It's like a flowchart helping you decide what the object is based on your answers.
3. Random Forest:
- Picture a group of friends making decisions together. Random Forest is like combining the opinions of many friends to make a more reliable decision.
4. Support Vector Machines (SVM):
- Imagine drawing a line to separate different types of things, like putting all red balls on one side and blue balls on the other, with the line in between them.
5. k-Nearest Neighbors (kNN):
- Pretend you have a collection of toys, and you want to find out which toys are similar to a new one. kNN is like asking your friends which toys are closest in looks to the new one.
6. Naive Bayes:
- Think of a detective trying to solve a mystery. Naive Bayes is like the detective making guesses based on the probability of certain clues leading to the culprit.
7. K-Means Clustering:
- Imagine sorting your toys into different groups based on their similarities, like putting all the cars in one group and all the dolls in another.
8. Hierarchical Clustering:
- Picture organizing your toys into groups, and then those groups into bigger groups. It's like creating a family tree for your toys based on their similarities.
9. Principal Component Analysis (PCA):
- Suppose you have many different measurements for your toys, and PCA helps you find the most important ones to understand and compare them easily.
10. Neural Networks (Deep Learning):
- Think of a robot brain with lots of interconnected parts. Each part helps the robot understand different aspects of things, like recognizing shapes or colors.
11. Gradient Boosting algorithms:
- Imagine you are trying to reach the top of a hill, and each time you take a step, you learn from the mistakes of the previous step to get closer to the summit. XGBoost and LightGBM are like smart ways of learning from those steps.
Share with credits: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
ENJOY LEARNING ππ
β€3
10 AI Side Hustles You Can Start Today
β Prompt Engineering Services β Craft prompts for businesses using ChatGPT or Claude
β AI-Powered Resume Writer β Help people optimize resumes using GPT + design tools
β YouTube Script Generator β Offer scriptwriting using LLMs for creators & influencers
β AI Course Creation β Build and sell niche courses powered by AI tools (ChatGPT + Canva)
β Copywriting & SEO Services β Use AI to generate blog posts, ad copy, and product descriptions
β Newsletter Curation β Launch an AI-generated niche newsletter using curated content
β Chatbot Development β Build custom AI chatbots for small businesses
β Voiceover Generator β Convert scripts into realistic voiceovers for YouTube shorts or reels
β AI Art & Merch Store β Design AI-generated art and sell it on print-on-demand platforms
β Data Labeling & AI Testing β Offer manual or semi-automated labeling to startups training models
React if youβre thinking of monetizing your AI skills!
#aiskills
β Prompt Engineering Services β Craft prompts for businesses using ChatGPT or Claude
β AI-Powered Resume Writer β Help people optimize resumes using GPT + design tools
β YouTube Script Generator β Offer scriptwriting using LLMs for creators & influencers
β AI Course Creation β Build and sell niche courses powered by AI tools (ChatGPT + Canva)
β Copywriting & SEO Services β Use AI to generate blog posts, ad copy, and product descriptions
β Newsletter Curation β Launch an AI-generated niche newsletter using curated content
β Chatbot Development β Build custom AI chatbots for small businesses
β Voiceover Generator β Convert scripts into realistic voiceovers for YouTube shorts or reels
β AI Art & Merch Store β Design AI-generated art and sell it on print-on-demand platforms
β Data Labeling & AI Testing β Offer manual or semi-automated labeling to startups training models
React if youβre thinking of monetizing your AI skills!
#aiskills
β€4