Data Science Projects
51.9K subscribers
372 photos
1 video
57 files
329 links
Perfect channel for Data Scientists

Learn Python, AI, R, Machine Learning, Data Science and many more

Admin: @love_data
Download Telegram
Modern Time Series Forecasting with Python.pdf
25.5 MB
Modern Time Series Forecasting with Python
Manu Joseph, 2022
Rlecturenotes.pdf
4.3 MB
An Introduction to R
Petra Kuhnert, 2007
πŸ‘5❀2
150 SQL Queries for Practice
πŸ‘‡πŸ‘‡
https://t.iss.one/DataAnalystInterview/170
πŸ‘4
Company Name: Accenture
Role: Data Scientist
Topic: Silhouette, trend seasonality, bag of words, bagging boosting , F1 Score

1. What do you understand by the term silhouette coefficient?

The silhouette coefficient is a measure of how well clustered together a data point is with respect to the other points in its cluster. It is a measure of how similar a point is to the points in its own cluster, and how dissimilar it is to the points in other clusters. The silhouette coefficient ranges from -1 to 1, with 1 being the best possible score and -1 being the worst possible score.


2. What is the difference between trend and seasonality in time series?

Trends and seasonality are two characteristics of time series metrics that break many models. Trends are continuous increases or decreases in a metric’s value. Seasonality, on the other hand, reflects periodic (cyclical) patterns that occur in a system, usually rising above a baseline and then decreasing again.


3. What is Bag of Words in NLP?

Bag of Words is a commonly used model that depends on word frequencies or occurrences to train a classifier. This model creates an occurrence matrix for documents or sentences irrespective of its grammatical structure or word order.


4. What is the difference between bagging and boosting?

Bagging is a homogeneous weak learners’ model that learns from each other independently in parallel and combines them for determining the model average. Boosting is also a homogeneous weak learners’ model but works differently from Bagging. In this model, learners learn sequentially and adaptively to improve model predictions of a learning algorithm

5. What do you understand by the F1 score?

The F1 score represents the measurement of a model's performance. It is referred to as a weighted average of the precision and recall of a model. The results tending to 1 are considered as the best, and those tending to 0 are the worst. It could be used in classification tests, where true negatives don't matter much.
πŸ‘13❀8πŸ’”2
Top 5 data science projects for freshers

1. Predictive Analytics on a Dataset:
- Use a dataset to predict future trends or outcomes using machine learning algorithms. This could involve predicting sales, stock prices, or any other relevant domain.

2. Customer Segmentation:
- Analyze and segment customers based on their behavior, preferences, or demographics. This project could provide insights for targeted marketing strategies.

3. Sentiment Analysis on Social Media Data:
- Analyze sentiment in social media data to understand public opinion on a particular topic. This project helps in mastering natural language processing (NLP) techniques.

4. Recommendation System:
- Build a recommendation system, perhaps for movies, music, or products, using collaborative filtering or content-based filtering methods.

5. Fraud Detection:
- Develop a fraud detection system using machine learning algorithms to identify anomalous patterns in financial transactions or any domain where fraud detection is crucial.

Free Datsets -> https://t.iss.one/DataPortfolio/2?single

These projects showcase practical application of data science skills and can be highlighted on a resume for entry-level positions.

Join @pythonspecialist for more data science projects
πŸ‘21❀3
Where can you find each data distribution?
❀9πŸ‘4πŸ‘Ž2😁2
Python Real-World Projects.pdf
4 MB
Python Real-World Projects (2023)
πŸ‘12
The Foundation of Data Science
πŸ‘29
Thank you for being an amazing"subscriber" good luck to you all πŸ«‚


Your support truly means the world to me❀️

I wanna extent a heartfelt thankyou to each and every one of you for your constant support and overwhelming love.

Wish you all a happy new year in advance. May you all achieve your dreams and success in your lifeπŸ₯³βœ¨

WORK on your skills because that's what matters the most.
❀24πŸ‘15
What if we all are just a part of AI experiment by god- human’s life created as a unique dataset, contributing to the overall learning process. Creator contemplates the diversity of experiences encoded in the training data, like the complex interplay of joy, sorrow, love, hatred and conflict.

Read more.....
😁12πŸ‘7πŸ€”1
Data Science Projects
Which topic which interests you these days?
What's the topic which interests you these days (lol can't edit the poll)
🌚7❀1
SQL Cheat sheet (1).pdf
4.7 MB
SQL Cheat Sheet
πŸ‘12
πŸ‘‰βœ”οΈHere are Data Analytics-related questions along with their answers:

1.Question: What is the purpose of exploratory data analysis (EDA)?

Answer: EDA is used to analyze and summarize data sets, often through visual methods, to understand patterns, relationships, and potential outliers.

2. Question: What is the difference between supervised and unsupervised learning?

Answer: Supervised learning involves training a model on a labeled dataset, while unsupervised learning deals with unlabeled data to discover patterns without explicit guidance.

3.Question: Explain the concept of normalization in the context of data preprocessing.

Answer: Normalization scales numeric features to a standard range, preventing certain features from dominating due to their larger scales.

4. Question: What is the purpose of a correlation coefficient in statistics?

Answer: A correlation coefficient measures the strength and direction of a linear relationship between two variables, ranging from -1 to 1.

5. Question: What is the role of a decision tree in machine learning?

Answer: A decision tree is a predictive model that maps features to outcomes by recursively splitting data based on feature conditions.

6. Question: Define precision and recall in the context of classification models.

Answer: Precision is the ratio of correctly predicted positive observations to the total predicted positives, while recall is the ratio of correctly predicted positive observations to all actual positives.

7. Question: What is the purpose of cross-validation in machine learning?

Answer: Cross-validation assesses a model's performance by dividing the dataset into multiple subsets, training the model on some, and testing it on others, helping to evaluate its generalization ability.

8. Question: Explain the concept of a data warehouse.

Answer: A data warehouse is a centralized repository that stores, integrates, and manages large volumes of data from different sources, providing a unified view for analysis and reporting.

9. Question: What is the difference between structured and unstructured data?

Answer: Structured data is organized and easily searchable (e.g., databases), while unstructured data lacks a predefined structure (e.g., text documents, images).

10. Question: What is clustering in machine learning?

Answer: Clustering is a technique that groups similar data points together based on certain features, helping to identify patterns or relationships within the data.
πŸ‘19❀3
Forwarded from Artificial Intelligence
This is how ML works
🀣72πŸ‘16😁4πŸ₯°2πŸ–•2πŸ‘1