This media is not supported in your browser
VIEW IN TELEGRAM
🤯💣 PYTHON ТРЮК ПО УСКОРЕНИЮ #python
Совет по Python: если в цикле много обращений к атрибутам объекта или модуля — вынеси их в локальную переменную.
Доступ к локалам работает быстрее, чем к атрибутам, поэтому такой приём иногда ускоряет код на 20–50 процентов.
Совет по Python: если в цикле много обращений к атрибутам объекта или модуля — вынеси их в локальную переменную.
Доступ к локалам работает быстрее, чем к атрибутам, поэтому такой приём иногда ускоряет код на 20–50 процентов.
#медленно — каждый проход лезет в атрибут
for i in range(10_000_000):
x = obj.value
#быстрее — сохрани ссылку заранее
val = obj.value
for i in range(10_000_000):
x = val
#ещё пример — кешируем функцию
import math
sqrt = math.sqrt
for i in range(1_000_000):
r = sqrt(i)
🔥15❤5👍5😁1
Аналитика, которая скрывает больше, чем кажется
Каждый день мы пользуемся продуктами, за которыми стоят тщательно продуманные эксперименты и A/B-тесты. Мы видим только интерфейс, а аналитики изучают поведение миллионов пользователей и формируют гипотезы на основе собранных данных.
Даже мелкие изменения — например, баннер, цвет кнопки или порядок элементов на странице — могут сильно повлиять на бизнес-показатели. Именно специалисты по данным помогают компаниям принимать решения, опираясь на такие эксперименты.
Развивайте свои навыки в аналитике данных с курсом онлайн-школы karpovꓸcourses, созданной одним из самых читаемых аналитиков России по данным NEWHR — Анатолием Карповым.
Обучение максимально приближено к реальной работе: за 5,5 месяцев вы освоите полный стек навыков — от SQL и Python до A/B-тестирования.
Преподают практики, а не теоретики: Анатолий Карпов, Роман Бунин, Анастасия Кузнецова и Анастасия Зеленова — востребованные аналитики, которые точно знают, какие компетенции помогут построить успешную карьеру.
После большинства онлайн-курсов новичкам сложно устроиться на первую работу — работодатели не всегда доверяют формальному образованию. С выпускниками karpovꓸcourses ситуация другая: их ценят на рынке, а во многих вакансиях прямо указывают, что кандидаты после karpovꓸcourses получают приоритет при отборе
Освойте навыки, которые действительно ценят работодатели: https://clc.to/erid_2W5zFJUaHB6
Реклама. ООО "КАРПОВ КУРСЫ". ИНН 7811764627. erid: 2W5zFJUaHB6
Каждый день мы пользуемся продуктами, за которыми стоят тщательно продуманные эксперименты и A/B-тесты. Мы видим только интерфейс, а аналитики изучают поведение миллионов пользователей и формируют гипотезы на основе собранных данных.
Даже мелкие изменения — например, баннер, цвет кнопки или порядок элементов на странице — могут сильно повлиять на бизнес-показатели. Именно специалисты по данным помогают компаниям принимать решения, опираясь на такие эксперименты.
Развивайте свои навыки в аналитике данных с курсом онлайн-школы karpovꓸcourses, созданной одним из самых читаемых аналитиков России по данным NEWHR — Анатолием Карповым.
Обучение максимально приближено к реальной работе: за 5,5 месяцев вы освоите полный стек навыков — от SQL и Python до A/B-тестирования.
Преподают практики, а не теоретики: Анатолий Карпов, Роман Бунин, Анастасия Кузнецова и Анастасия Зеленова — востребованные аналитики, которые точно знают, какие компетенции помогут построить успешную карьеру.
После большинства онлайн-курсов новичкам сложно устроиться на первую работу — работодатели не всегда доверяют формальному образованию. С выпускниками karpovꓸcourses ситуация другая: их ценят на рынке, а во многих вакансиях прямо указывают, что кандидаты после karpovꓸcourses получают приоритет при отборе
Освойте навыки, которые действительно ценят работодатели: https://clc.to/erid_2W5zFJUaHB6
Реклама. ООО "КАРПОВ КУРСЫ". ИНН 7811764627. erid: 2W5zFJUaHB6
❤2
🎧 Модель аудиоразмышлений Step-Audio-R1
Step-Audio-R1 — первая аудиомодель, которая преодолевает проблему "обратного масштабирования", улучшая производительность при увеличении вычислительных ресурсов. Используя метод MGRD, модель фокусируется на акустическом анализе, что позволяет ей эффективно обрабатывать аудиоданные.
🚀 Основные моменты:
- Успешно решает проблему "обратного масштабирования"
- Сравнима с Gemini 3 по аудиобенчмаркам
- Инновационный подход к обучению через акустические особенности
- Доступна для использования на Hugging Face и ModelScope
📌 GitHub: https://github.com/stepfun-ai/Step-Audio-R1
@pythonl
Step-Audio-R1 — первая аудиомодель, которая преодолевает проблему "обратного масштабирования", улучшая производительность при увеличении вычислительных ресурсов. Используя метод MGRD, модель фокусируется на акустическом анализе, что позволяет ей эффективно обрабатывать аудиоданные.
🚀 Основные моменты:
- Успешно решает проблему "обратного масштабирования"
- Сравнима с Gemini 3 по аудиобенчмаркам
- Инновационный подход к обучению через акустические особенности
- Доступна для использования на Hugging Face и ModelScope
📌 GitHub: https://github.com/stepfun-ai/Step-Audio-R1
@pythonl
❤8👍2🔥1
Размер Docker-образа - это не косметика.
Он напрямую влияет на:
- скорость CI/CD
- время деплоя
- cold start контейнеров
- расходы на storage и трафик
В примере ниже образ удалось сократить с 588 MB до 47.7 MB - почти на 92%.
Вот какие приёмы реально дают эффект.
1) Выбор базового образа - самое важное решение
Полный python:3.9 тянет за собой:
- лишние системные утилиты
- документацию
- dev-пакеты
Переход на python:3.9-alpine:
- в разы меньше размер
- быстрее скачивание
- меньше attack surface
Это первый и самый крупный выигрыш.
2) Оптимизация слоёв Docker
Каждый RUN, COPY, ADD - это новый слой.
Много мелких инструкций = раздув образа.
Правило:
- объединяй связанные команды
- удаляй временные файлы в том же RUN
Меньше слоёв - меньше вес - быстрее сборка.
3) .dockerignore - бесплатная оптимизация, которую часто забывают
Без .dockerignore в build context улетает всё:
- .venv
- .cache
- .git
- временные файлы
Это:
- увеличивает размер контекста
- замедляет сборку
- иногда ломает кеширование
.dockerignore должен быть всегда. Без исключений.
4) Multi-stage build - must-have для продакшена
Одна из самых мощных техник.
Идея простая:
- stage 1 - сборка, компиляция, зависимости
- stage 2 - только то, что нужно для запуска
В финальном образе:
- нет build-инструментов
- нет лишних библиотек
- только runtime
Результат:
- меньше размер
- меньше уязвимостей
- быстрее старт
Итоговый эффект:
- 588 MB -> 47.7 MB
- −91.89% размера
- быстрее CI
- быстрее деплой
- дешевле инфраструктура
Главный вывод:
маленькие оптимизации накапливаются.
Каждый сэкономленный мегабайт:
- ускоряет каждый pull
- ускоряет каждый deploy
- масштабируется вместе с вашей системой
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍16❤8🔥3😁3