⁉️Машинное обучение кажется чем-то сложным и недосягаемым? Всё проще, чем вы думаете!
Первый шаг — разобраться, как устроен ML-процесс и научиться работать в Jupyter Notebook — инструменте, с которого начинают все специалисты в Data Science.
На открытом уроке вы шаг за шагом поймёте, как строится путь от данных до модели. Научитесь запускать эксперименты в Jupyter Notebook и Google Colab, работать с виртуальными окружениями и не бояться “сломать” систему. Всё — в формате простых и наглядных примеров.
После урока вы сможете уверенно начать свой первый ML-проект и поймёте, какие инструменты нужны, чтобы перейти от теории к практике.
➡️ 13 ноября в 20:00 МСК. Открытый вебинар проходит в преддверии старта курса «Machine Learning. Basic». Регистрируйтесь и сделайте первый шаг в машинное обучение без страха и путаницы:т https://otus.pw/sLZ2/?erid=2W5zFGojX9i
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
Первый шаг — разобраться, как устроен ML-процесс и научиться работать в Jupyter Notebook — инструменте, с которого начинают все специалисты в Data Science.
На открытом уроке вы шаг за шагом поймёте, как строится путь от данных до модели. Научитесь запускать эксперименты в Jupyter Notebook и Google Colab, работать с виртуальными окружениями и не бояться “сломать” систему. Всё — в формате простых и наглядных примеров.
После урока вы сможете уверенно начать свой первый ML-проект и поймёте, какие инструменты нужны, чтобы перейти от теории к практике.
➡️ 13 ноября в 20:00 МСК. Открытый вебинар проходит в преддверии старта курса «Machine Learning. Basic». Регистрируйтесь и сделайте первый шаг в машинное обучение без страха и путаницы:т https://otus.pw/sLZ2/?erid=2W5zFGojX9i
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
❤5👍1😁1
This media is not supported in your browser
VIEW IN TELEGRAM
Тестируй Python-код не «на ощупь», а через три уровня.
Сначала юнит-тесты для базовой логики, затем фикстуры для реального окружения (файлы, БД, HTTP-моки), и сверху — hypothesis для автоматического поиска скрытых багов.
Так тесты будут короткими, а покрытие и надёжность — максимальными.
Сначала юнит-тесты для базовой логики, затем фикстуры для реального окружения (файлы, БД, HTTP-моки), и сверху — hypothesis для автоматического поиска скрытых багов.
Так тесты будут короткими, а покрытие и надёжность — максимальными.
import pytest
from hypothesis import given, strategies as st
# 1) Простой юнит-тест
def test_add():
assert add(2, 3) == 5
2) Фикстура для окружения (временный файл)
@pytest.fixture
def temp_file(tmp_path):
file_path = tmp_path / "data.txt"
file_path.write_text("42")
return file_path
def test_read_data(temp_file):
assert read_data(temp_file) == 42
3) Property-based тест (генерация случайных входных данных)
@given(st.integers(), st.integers())
def test_add_random(a, b):
assert add(a, b) == a + b
Быстрый запуск только упавших тестов:
pytest --lf
🔥18❤7👍3😱2
This media is not supported in your browser
VIEW IN TELEGRAM
Теперь доступен полный стек для кастомизации и тонкой настройки модели:
- из видео в 3D-сцену за одну секунду
- преобразование ЛЮБОГО входа (картинка, видео, 3D-приоры) в ЛЮБОЙ выход: 3DGS, depth, камеры, normal-карты, point-cloud
- готовый код для обучения и свои пайплайны
Можно сразу пробовать онлайн-демо или собирать свою модель.
Демо: https://huggingface.co/spaces/tencent/HunyuanWorld-Mirror
Код: https://github.com/Tencent-Hunyuan/HunyuanWorld-Mirror
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10👍4🔥2😱1