Forwarded from VK Team
Конкурс для тех, кто не боится высоких нагрузок 😎
Мы в VK вовсю готовимся к Highload++. Привезём много крутого — и вы обязаны это увидеть.
Поэтому мы решили разыграть 2 билета на ивент 💙
Условия простые:
✅подпишитесь на каналы @vkjobs, @backendhubvk и @frontendhubvk
✅нажмите кнопку «Участвовать»
✅увеличьте свои шансы и пригласите друга — вместе веселее!
Информацию об организаторе, правилах и призах ищите здесь, а результаты конкурса мы подведём 1 ноября. Удачи!
Участников: 0
Призовых мест: 2
Дата розыгрыша: 16:00, 01.11.2025 MSK (2 дня)
Мы в VK вовсю готовимся к Highload++. Привезём много крутого — и вы обязаны это увидеть.
Поэтому мы решили разыграть 2 билета на ивент 💙
Условия простые:
✅подпишитесь на каналы @vkjobs, @backendhubvk и @frontendhubvk
✅нажмите кнопку «Участвовать»
✅увеличьте свои шансы и пригласите друга — вместе веселее!
Информацию об организаторе, правилах и призах ищите здесь, а результаты конкурса мы подведём 1 ноября. Удачи!
Участников: 0
Призовых мест: 2
Дата розыгрыша: 16:00, 01.11.2025 MSK (2 дня)
❤4
This media is not supported in your browser
VIEW IN TELEGRAM
Иногда тебе нужно выполнить подзапрос, который зависит от строки из внешнего запроса, например, выбрать последние покупки для каждого пользователя или самые дорогие товары из категории.
Обычный JOIN не справится, но есть мощный инструмент - LATERAL JOIN. Он позволяет вызывать подзапрос для каждой строки внешней таблицы, сохраняя контекст.
Этот приём часто заменяет громоздкие запросы или оконные функции и работает значительно быстрее на PostgreSQL.
Используй его, когда нужно сделать что-то «на лету» для каждой записи.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤24👍11🔥4😢1
🤖 OpenTrack: Открытая система трекинга движений
OpenTrack — это кодовая база для трекинга движений гуманоидов, использующая MuJoCo для симуляции и поддерживающая многопроцессорное обучение. Проект ориентирован на исследование и разработку в области робототехники.
🚀 Основные моменты:
- Открытый исходный код для трекинга движений
- Поддержка многопроцессорного обучения
- Использует MuJoCo для симуляции
- Реализует различные сценарии обучения
📌 GitHub: https://github.com/GalaxyGeneralRobotics/OpenTrack
OpenTrack — это кодовая база для трекинга движений гуманоидов, использующая MuJoCo для симуляции и поддерживающая многопроцессорное обучение. Проект ориентирован на исследование и разработку в области робототехники.
🚀 Основные моменты:
- Открытый исходный код для трекинга движений
- Поддержка многопроцессорного обучения
- Использует MuJoCo для симуляции
- Реализует различные сценарии обучения
📌 GitHub: https://github.com/GalaxyGeneralRobotics/OpenTrack
❤9🔥5👍4
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Python трюк: безопасное завершение потоков через флаг события
Многие просто
Многие просто
daemon=True ставят и надеются, что всё само завершится. Но это ломает контроль и может привести к утечкам. Проще и надёжнее — использовать общий Event, чтобы уведомлять потоки о завершении.
import threading
import time
stop_event = threading.Event()
def worker():
while not stop_event.is_set():
print("Работаю...")
time.sleep(0.3)
print("Останавливаюсь корректно.")
thread = threading.Thread(target=worker)
thread.start()
time.sleep(1.2)
stop_event.set() # посылаем сигнал остановки
thread.join()
print("Все потоки завершены корректно.")
❤18👍4🔥3😁3
⚡️ Pytest markers: ускоряем разработку и тестирование
Когда проект растёт — часть тестов становится медленной (ML-тренировка, GPU-инференс, интеграционные проверки).
Pytest позволяет помечать такие тесты и запускать только нужные группы.
В примере:
-
-
-
Команды:
# Запустить только быстрые
pytest -m fast
# Запустить всё, кроме slow
pytest -m "not slow"
Идеально, когда нужно:
- быстро прогнать код перед пушем
- запускать тяжёлые тесты по расписанию/в CI
- разделить ML-тесты по ресурсам (CPU/GPU)
Используйте маркеры — и ваша разработка станет быстрее и чище 🧪⚙️
#pytest #python #testing #mlengineering #unittesting #devtools
Когда проект растёт — часть тестов становится медленной (ML-тренировка, GPU-инференс, интеграционные проверки).
Pytest позволяет помечать такие тесты и запускать только нужные группы.
В примере:
-
@pytest.mark.fast — быстрые юнит-тесты-
@pytest.mark.slow — долгие тесты (например, обучение модели)-
@pytest.mark.gpu — тесты, требующие GPUКоманды:
# Запустить только быстрые
pytest -m fast
# Запустить всё, кроме slow
pytest -m "not slow"
Идеально, когда нужно:
- быстро прогнать код перед пушем
- запускать тяжёлые тесты по расписанию/в CI
- разделить ML-тесты по ресурсам (CPU/GPU)
Используйте маркеры — и ваша разработка станет быстрее и чище 🧪⚙️
#pytest #python #testing #mlengineering #unittesting #devtools
👍12❤8🔥5
Изучили базу по Python и не знаете, как кодить еще лучше?
✅ Пройдите бесплатный курс по настройке инструментов Python в Академии Selectel.
Рассказываем, что изучать после основ и как не зациклиться на типовых навыках на старте. В программе курса:
🔸 освоим Python-инструменты для упрощения работы с кодом: SonarLint, Myry и другие;
🔸 протестируем библиотеку Tkinter, чтобы создавать приложения с графическим интерфейсом;
🔸 расскажем, как парсить данные с веб-сайтов и закрепить полученные знания на практике.
Все материалы бесплатные. Проходите курс в комфортном темпе в Академии Selectel: https://slc.tl/xc1nq
Реклама. АО "Селектел". erid:2W5zFG6QH36
✅ Пройдите бесплатный курс по настройке инструментов Python в Академии Selectel.
Рассказываем, что изучать после основ и как не зациклиться на типовых навыках на старте. В программе курса:
🔸 освоим Python-инструменты для упрощения работы с кодом: SonarLint, Myry и другие;
🔸 протестируем библиотеку Tkinter, чтобы создавать приложения с графическим интерфейсом;
🔸 расскажем, как парсить данные с веб-сайтов и закрепить полученные знания на практике.
Все материалы бесплатные. Проходите курс в комфортном темпе в Академии Selectel: https://slc.tl/xc1nq
Реклама. АО "Селектел". erid:2W5zFG6QH36
❤8😱1😢1
🧠 Дискретные диффузионные модели для генерации текста
Репозиторий предлагает аннотированную реализацию модели дискретной диффузии для генерации текста, основанную на архитектуре "baby GPT" от Андрея Карпаты. Используя подход денойзинга, модель восстанавливает и генерирует текст, обучаясь на примерах, таких как произведения Шекспира.
🚀 Основные моменты:
- Обучение на текстах с использованием дискретных диффузионных моделей.
- Параллельная генерация токенов вместо последовательной.
- Включает математическую основу и адаптацию существующих архитектур.
- Применение к различным наборам данных и настройкам модели.
📌 GitHub: https://github.com/ash80/diffusion-gpt
#python
Репозиторий предлагает аннотированную реализацию модели дискретной диффузии для генерации текста, основанную на архитектуре "baby GPT" от Андрея Карпаты. Используя подход денойзинга, модель восстанавливает и генерирует текст, обучаясь на примерах, таких как произведения Шекспира.
🚀 Основные моменты:
- Обучение на текстах с использованием дискретных диффузионных моделей.
- Параллельная генерация токенов вместо последовательной.
- Включает математическую основу и адаптацию существующих архитектур.
- Применение к различным наборам данных и настройкам модели.
📌 GitHub: https://github.com/ash80/diffusion-gpt
#python
❤8👍4🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
Тестируй Python-код не «на ощупь», а через три уровня.
Сначала юнит-тесты для базовой логики, затем фикстуры для реального окружения (файлы, БД, HTTP-моки), и сверху — hypothesis для автоматического поиска скрытых багов.
Так тесты будут короткими, а покрытие и надёжность — максимальными.
Сначала юнит-тесты для базовой логики, затем фикстуры для реального окружения (файлы, БД, HTTP-моки), и сверху — hypothesis для автоматического поиска скрытых багов.
Так тесты будут короткими, а покрытие и надёжность — максимальными.
import pytest
from hypothesis import given, strategies as st
# 1) Простой юнит-тест
def test_add():
assert add(2, 3) == 5
2) Фикстура для окружения (временный файл)
@pytest.fixture
def temp_file(tmp_path):
file_path = tmp_path / "data.txt"
file_path.write_text("42")
return file_path
def test_read_data(temp_file):
assert read_data(temp_file) == 42
3) Property-based тест (генерация случайных входных данных)
@given(st.integers(), st.integers())
def test_add_random(a, b):
assert add(a, b) == a + b
Быстрый запуск только упавших тестов:
pytest --lf
🔥20❤8👍3😱2
This media is not supported in your browser
VIEW IN TELEGRAM
Теперь доступен полный стек для кастомизации и тонкой настройки модели:
- из видео в 3D-сцену за одну секунду
- преобразование ЛЮБОГО входа (картинка, видео, 3D-приоры) в ЛЮБОЙ выход: 3DGS, depth, камеры, normal-карты, point-cloud
- готовый код для обучения и свои пайплайны
Можно сразу пробовать онлайн-демо или собирать свою модель.
Демо: https://huggingface.co/spaces/tencent/HunyuanWorld-Mirror
Код: https://github.com/Tencent-Hunyuan/HunyuanWorld-Mirror
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
❤12👍6🔥3😱1
Почему «Async Django» часто решает не ту проблему
Django теперь умеет ASGI и async-views, но автор статьи отмечает: переход на async сам по себе почти ничего не ускоряет. Чтобы получить выгоду, весь код должен быть переписан под асинхронность, а в реальных проектах прирост обычно минимальный.
Где async реально нужен?
В задачах с большим количеством ожидания: внешние API, WebSockets, стриминг ответов. Там async даёт ощутимую экономию.
Но есть нюанс:
Django стал «двухрежимным» фреймворком - синхронные и асинхронные части живут рядом, усложняя архитектуру. ORM всё ещё в основном синхронная, и это становится бутылочным горлышком.
Поэтому для большинства проектов выгоднее оставить sync Django и вынести тяжёлые операции в фоновые задачи (Celery, RQ). Это проще, надёжнее и предсказуемее.
Итог:
Async Django - круто с инженерной точки зрения, но бизнес-ценность есть далеко не в каждом сценарии. Для большинства приложений классический Django остаётся лучшим выбором.
https://www.loopwerk.io/articles/2025/async-django-why/
Django теперь умеет ASGI и async-views, но автор статьи отмечает: переход на async сам по себе почти ничего не ускоряет. Чтобы получить выгоду, весь код должен быть переписан под асинхронность, а в реальных проектах прирост обычно минимальный.
Где async реально нужен?
В задачах с большим количеством ожидания: внешние API, WebSockets, стриминг ответов. Там async даёт ощутимую экономию.
Но есть нюанс:
Django стал «двухрежимным» фреймворком - синхронные и асинхронные части живут рядом, усложняя архитектуру. ORM всё ещё в основном синхронная, и это становится бутылочным горлышком.
Поэтому для большинства проектов выгоднее оставить sync Django и вынести тяжёлые операции в фоновые задачи (Celery, RQ). Это проще, надёжнее и предсказуемее.
Итог:
Async Django - круто с инженерной точки зрения, но бизнес-ценность есть далеко не в каждом сценарии. Для большинства приложений классический Django остаётся лучшим выбором.
https://www.loopwerk.io/articles/2025/async-django-why/
👍14🔥7❤6
В продакшене важно правильно сигнализировать системе об успехе или ошибке.
В Python это делается через sys.exit(<код>):
0 — успешное завершение
неноль — ошибка, которую может поймать CI/CD, Docker, cron или любой supervisor
В примере выше try/except использует это правило:
- при ошибке деления выводится сообщение и скрипт завершается с кодом 1
- при успешной операции — вывод “Operation successful!” и код 0
Такой паттерн обязателен для CLI-утилит, сервисных скриптов, пайплайнов и автоматизации: он делает выполнение предсказуемым и даёт внешним системам корректно реагировать на сбои.
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19❤6🔥4🤩1
Уже завтра(11 ноября) в 19:00 по мск приходи онлайн на открытое собеседование, чтобы посмотреть на настоящее интервью на Middle Python-разработчика.
Как это будет:
Это бесплатно. Эфир проходит в рамках менторской программы от ШОРТКАТ для Python-разработчиков, которые хотят повысить свой грейд, ЗП и прокачать скиллы.
Переходи в нашего бота, чтобы получить ссылку на эфир → @shortcut_py_bot
Реклама.
О рекламодателе.
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥6❤2
Что умеет:
- следит за локальными и удалёнными Docker-хостами в одном окне
- умно перезапускает контейнеры с настраиваемой логикой повторов
- шлёт алерты в Telegram, Slack, Discord, Gotify и почту
- обновляет контейнеры по расписанию
- позволяет разворачивать Docker Run и Compose-пресеты прямо из UI
- показывает health-чеки и события в реальном времени
Github: https://github.com/darthnorse/dockmon
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥8❤4👍3
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 27 ноября пройдет Pytup — митап для разработчиков, ML-инженеров и энтузиастов Python. Встречаемся в Екатеринбурге и онлайн, чтобы в неформальной обстановке обсудить новые подходы, решения и вызовы индустрии.
Разработчик системы контроля качества умных устройств на производстве Яндекс Алисы Арсений Саблин поделится, как используется Python при тестировании станции с Алисой. Техлид VK Tech Никита Улько разберет чистую архитектуру с практической точки зрения. А технический менеджер проектов Yandex Cloud Егор Гордовский расскажет о работе дата-центров.
Помимо докладов участников митапа в Екатеринбурге ждут дискуссионные столы по актуальным темам, нетворкинг с экспертами из разных компаний, а также гонки на роверах и соревнования по игре в змейку.
📅 27 ноября в 17.00 (по Екб)
📍 Екатеринбург
🛜 Офлайн/онлайн
Регистрируемся
Разработчик системы контроля качества умных устройств на производстве Яндекс Алисы Арсений Саблин поделится, как используется Python при тестировании станции с Алисой. Техлид VK Tech Никита Улько разберет чистую архитектуру с практической точки зрения. А технический менеджер проектов Yandex Cloud Егор Гордовский расскажет о работе дата-центров.
Помимо докладов участников митапа в Екатеринбурге ждут дискуссионные столы по актуальным темам, нетворкинг с экспертами из разных компаний, а также гонки на роверах и соревнования по игре в змейку.
📅 27 ноября в 17.00 (по Екб)
📍 Екатеринбург
🛜 Офлайн/онлайн
Регистрируемся
❤9👍1🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
Напиши функцию, которая распарсит вложенные структуры (списки, кортежи, множества, генераторы) в одну последовательность, но не трогает строки и не падает из-за циклов.
Вот как сделать это без рекурсии, только через стек:
def flatten(obj):
stack = [obj]
seen = set()
while stack:
x = stack.pop()
if isinstance(x, (str, bytes)):
yield x
elif isinstance(x, (list, tuple, set)):
xid = id(x)
if xid in seen:
continue
seen.add(xid)
stack.extend(reversed(list(x)))
else:
yield x
# пример
data = [1, [2, 3], ("ab", [4, 5]), 6]
data.append(data) # создаём цикл
print(list(flatten(data)))
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10👍5🔥4🤩2
🤖 Python + ИИ — лёгкий старт и быстрый рост в карьере разработчика.
Освойте с нуля один из популярных языков программирования и усильте свой вес на рынке знанием ИИ-инструментов для разработчиков на расширенном курсе «Python-разработчик».
Вы научитесь:
- разрабатывать веб-приложения и API;
- работать с фреймворками Django, Flask, FastAPI и с базами данных SQL, PostgreSQL;
- разбираться в принципах ООП, многопоточности, асинхронности.
Вы выполните более 90 практических заданий, добавите в портфолио 23 проекта и научитесь проходить технические интервью. А сразу после окончания курса пройдёте собеседования в наших компаниях-партнёрах: Ozon Банке, Авито и ВТБ.
Весь ноябрь в Нетологии — чёрная пятница: заберите курс со скидкой 50% и получите приятные подарки.
➡️ Узнать подробности
Реклама. ООО "Нетология". ИНН 7726464125 Erid 2VSb5wAW1AZ
Освойте с нуля один из популярных языков программирования и усильте свой вес на рынке знанием ИИ-инструментов для разработчиков на расширенном курсе «Python-разработчик».
Вы научитесь:
- разрабатывать веб-приложения и API;
- работать с фреймворками Django, Flask, FastAPI и с базами данных SQL, PostgreSQL;
- разбираться в принципах ООП, многопоточности, асинхронности.
Вы выполните более 90 практических заданий, добавите в портфолио 23 проекта и научитесь проходить технические интервью. А сразу после окончания курса пройдёте собеседования в наших компаниях-партнёрах: Ozon Банке, Авито и ВТБ.
Весь ноябрь в Нетологии — чёрная пятница: заберите курс со скидкой 50% и получите приятные подарки.
➡️ Узнать подробности
Реклама. ООО "Нетология". ИНН 7726464125 Erid 2VSb5wAW1AZ
❤3🔥2👍1😱1
⚡️ Rust vs Python - как найти баланс между скоростью и простотой
JetBrains выпустили подробный разбор, где сравнивают Python и Rust без фанатизма — по скорости, синтаксису, памяти, экосистеме, конкурентности и даже по карьерным сценариям.
Главный вывод: Python нужен там, где важна скорость разработки и богатая экосистема, Rust, когда критична производительность, безопасность и масштабируемость. Всё чаще их используют вместе: Python для логики, Rust для самых горячих участков.
Ключевые моменты
Рост и популярность
- Python уверенно расширяет аудиторию: быстрый вход, огромная экосистема, удобство для ML, веба и автоматизации.
- Rust годами остаётся самым любимым языком разработчиков — благодаря безопасности памяти, скорости и надёжности.
Типы и управление памятью
- Python — динамическая типизация и удобный GC: легко начать, но ошибки всплывают в рантайме.
- Rust — строгая типизация, система владения и заимствований, отсутствие GC: ошибки ловятся на этапе компиляции, производительность предсказуема.
Производительность и конкурентность
- Python ограничен GIL: хорош для I/O, но CPU-параллелизм требует multiprocessing или расширений.
- Rust не имеет GIL — настоящая параллельность, «бесстрашная» конкурентность и контроль безопасности компилятором.
Экосистема
- Python — PyPI, Jupyter, зрелые фреймворки для DS/ML, веба, автоматизации.
- Rust — Cargo и crates.io, сильная база для CLI, системного софта, WebAssembly.
Комбинация Python + Rust
- Тренд — ускорять Python-проекты Rust-модулями.
- Библиотеки типа pydantic-core или Ruff показывают огромный прирост скорости.
- PyO3 делает интеграцию очень простой: Rust-код можно вызывать как обычный Python-модуль.
Карьера
- Python - широкие вакансии, огромный спрос в данных и ML.
- Rust - меньше позиций, но выше специализация в инфраструктуре, системной разработке и высоконагруженных сервисах.
Как выбирать
- Нужна скорость разработки и гибкость — Python.
- Нужна производительность и надёжность — Rust.
- Нужны и то, и другое — гибридный подход Python + Rust.
Подробный разбор - в блоге JetBrains:
https://blog.jetbrains.com/rust/2025/11/10/rust-vs-python-finding-the-right-balance-between-speed-and-simplicity/
#Rust #Python #Programming #Backend #Performance
@pythonl
JetBrains выпустили подробный разбор, где сравнивают Python и Rust без фанатизма — по скорости, синтаксису, памяти, экосистеме, конкурентности и даже по карьерным сценариям.
Главный вывод: Python нужен там, где важна скорость разработки и богатая экосистема, Rust, когда критична производительность, безопасность и масштабируемость. Всё чаще их используют вместе: Python для логики, Rust для самых горячих участков.
Ключевые моменты
Рост и популярность
- Python уверенно расширяет аудиторию: быстрый вход, огромная экосистема, удобство для ML, веба и автоматизации.
- Rust годами остаётся самым любимым языком разработчиков — благодаря безопасности памяти, скорости и надёжности.
Типы и управление памятью
- Python — динамическая типизация и удобный GC: легко начать, но ошибки всплывают в рантайме.
- Rust — строгая типизация, система владения и заимствований, отсутствие GC: ошибки ловятся на этапе компиляции, производительность предсказуема.
Производительность и конкурентность
- Python ограничен GIL: хорош для I/O, но CPU-параллелизм требует multiprocessing или расширений.
- Rust не имеет GIL — настоящая параллельность, «бесстрашная» конкурентность и контроль безопасности компилятором.
Экосистема
- Python — PyPI, Jupyter, зрелые фреймворки для DS/ML, веба, автоматизации.
- Rust — Cargo и crates.io, сильная база для CLI, системного софта, WebAssembly.
Комбинация Python + Rust
- Тренд — ускорять Python-проекты Rust-модулями.
- Библиотеки типа pydantic-core или Ruff показывают огромный прирост скорости.
- PyO3 делает интеграцию очень простой: Rust-код можно вызывать как обычный Python-модуль.
Карьера
- Python - широкие вакансии, огромный спрос в данных и ML.
- Rust - меньше позиций, но выше специализация в инфраструктуре, системной разработке и высоконагруженных сервисах.
Как выбирать
- Нужна скорость разработки и гибкость — Python.
- Нужна производительность и надёжность — Rust.
- Нужны и то, и другое — гибридный подход Python + Rust.
Подробный разбор - в блоге JetBrains:
https://blog.jetbrains.com/rust/2025/11/10/rust-vs-python-finding-the-right-balance-between-speed-and-simplicity/
#Rust #Python #Programming #Backend #Performance
@pythonl
❤14👍8🔥2😁1