Python/ django
61K subscribers
2.17K photos
94 videos
48 files
2.9K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит-каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
Download Telegram
🚀 С нуля → до портфолио и оффера в ИТ. Совершенно беслпатно!

«Школа 21» от Сбера — это бесплатная школа цифровых технологий. Здесь ты прокачаешься в ИТ с нуля, научишься работать в команде, получишь реальные навыки и опыт.
Без лекций и преподавателей. Только практика и нетворкинг.

📌 Что внутри:
— кампусы, которые работают 24/7 в Москве, Уфе, Казани, Новосибирске, Белгороде, Липецке, Нижнем Новгороде и других городах России.
— возможность совмещать с работой или учебой в вузе.
— сюда поступают независимо от образования: 50% участников пришли без опыта в ИТ.
— гарантированная стажировка в ИТ-компании.
— востребованные профессии: разработчик, devops/sre-инженер, data scientist, qa-инженер, специалист по кибербезопасности, бизнес- и системный аналитик.

🎯 Хочешь стать частью ИТ-комьюнити? Подавай заявку прямо сейчас: https://21-school.ru/

Реклама. Заказчик АНО «Школа 21» ИНН 7736316133
6🔥2👍1😱1
🛠️ Microsoft Research выложили в open-source новый инструмент — Debug-Gym.

Это песочница, где LLM‑агенты могут:
Ставить брейкпоинты
Чекать переменные
Перезаписывать файлы, пока тесты не позеленеют

Всё изолировано в Docker — безопасно при проведение тестов.

📊 Протестировано 9 моделей на 3 бенчмарках. В эксперименте модели решали 300 багов — с доступом к Debug-Gym и без.
Когда агентам дали дебаг‑инструменты, их точность выросла. Но даже лучшие решили <50% задач на SWE‑bench Lite.

Писать код ИИ уже умеет.
Дебажить — пока нет.
А это и есть самая трудная часть.

Microsoft уже работает над обучением моделей для поиска информации при отладке, как RAG — но для дебага.

🔗 Сам инструмент: https://microsoft.github.io/debug-gym/
🔗Статья: https://arxiv.org/abs/2503.21557

@pythonl

#microsoft #ai #ml
10👍3🔥3
Полезно для преподавателей алгоритмов

Т-Образование запускает бесплатный онлайн-курс «Алгоритмы и структуры данных». Пригодится тем, кто хочет сделать занятия в вузах еще интереснее.

Курс основан на опыте экспертов и лучших практиках. Он создан, чтобы улучшить образование вместе с преподавателями. Подобное обучение уже проводили для студентов — выпускники программ побеждают в олимпиадах и устраиваются в крупные бигтех-компании.

Здесь вы можете:
— Повысить квалификацию.
— Узнать, как алгоритмы применяют в реальных финтех-задачах, и делиться примерами со студентами.
— Получить материалы для работы и доступ к образовательной платформе, чтобы вести свой курс и не переносить данные в другие сервисы.
— Познакомиться с коллегами из других вузов — обмениваться опытом и идеями в общем чате.

Занятия легко совмещать с работой: они будут проходить раз в неделю по вечерам. Курс продлится один семестр — с сентября по январь.

Успейте подать заявку и пройти отбор до 16 августа
👍52🔥2
🔍 Regex не прощает ошибок… но с Python мы найдем выход!

Когда в запросе опечатка (`"prro"` вместо "pro"`) — `re.search() ничего не найдёт.

🙅‍♂️ Regex: [] → *Ноль результатов*

diff​lib то что нам нужно!
С SequenceMatcher ты можешь находить похожие строки даже с опечатками.

📌 Пример:

from difflib import SequenceMatcher

def fuzzy_match(query, products, threshold=0.6):
matches = []
for product in products:
ratio = SequenceMatcher(None, query.lower(), product.lower()).ratio()
if ratio >= threshold:
matches.append((product, f"{ratio:.2f}"))
return matches


🧠 Результат:

[('iPhone 14 Pro Max', '0.88')]


📦 Используй difflib для user-friendly поиска и автодополнения. Особенно полезно для:
- Поиска товаров
- Обработки ввода пользователя
- Систем рекомендаций

🔥 Идеально, когда нельзя потерять результат из-за одной буквы!

@pythonl
👍176🔥6😁2
This media is not supported in your browser
VIEW IN TELEGRAM
Ведущие ML- и DS-инженеры соберутся 13 и 14 сентября на E-CODE.
Это масштабное IT-событие создано командой Ozon Tech. Вы приглашены, но нужно зарегистрироваться: https://s.ozon.ru/m8XO9ot

Что будет:
6 контентных треков — один из них для ML/DS.
Выступления известных учёных.
Качественный нетворк — комьюнити middle+ специалистов.
Интеллектуальные интерактивы — и эксклюзивный мерч в подарок.
Вечеринки каждый день — на сцене НТР, Заточка, ILWT и Нейромонах Феофан.

E-CODE — комьюнити-пространство, в котором стоит быть 💙
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥4
🔥 Быстро превращай словарь в именованный кортеж (`namedtuple`) — красиво, удобно, читаемо


from collections import namedtuple

Parts = {
'id_num': '1234',
'desc': 'Ford Engine',
'cost': 1200.00,
'amount': 10
}

parts = namedtuple('Parts', Parts.keys())(**Parts)
print(parts)
# Parts(amount=10, cost=1200.0, id_num='1234', desc='Ford Engine')


💡 Зачем это нужно?

Получаешь доступ к полям как к атрибутам (parts.id_num)

Удобно для структурированных данных (например, из JSON или API)

Легко отлаживать и читать

📌 Полезный приём, если хочешь избавиться от лишнего dict['ключ'] — и сделать код чуть "чище".

@pythonl
11👍4🔥3😁2
Forwarded from Machinelearning
⚡️ GGUF-версии GPT-OSS от Unsloth.

Unsloth конвертировали обе GPT-OSS (20B и 120B) и исправили ошибки, чтобы повысить качество инференса.

🟡Оптимальный сетап:

🟢20B работает со скоростью более 10 токенов/с при полной точности на 14 ГБ оперативной памяти.

🟢120B с полной точностью будет давать >40 токенов/с на примерно 64 ГБ ОЗУ.

Минимальных требований для запуска моделей нет, запуститься можно даже если у вас всего 6 ГБ и только CPU, но инференс будет медленнее.

GPU не требуется , особенно для модели 20B, но его наличие значительно увеличивает скорость вывода (~80 токенов/с). С чем-то вроде H100 можно получить пропускную способность 140 токенов/с, и это значительно быстрее, чем у OpenAI в ChatGPT.

Модели можно запустить через llama.cpp, LM Studio или Open WebUI. Если модель 120B слишком медленная, попробуйте версию 20B - она очень быстрая и работает не хуже o3-mini.

Помимо моделей формата GGUF c полной точностью, Unsloth сделали версии с 4-bit и 16-bit точностью. 4-бинтый квант, кстати, можно файнтюнить на 24 ГБ VRAM.

📌 Подробная пошаговая инструкция по локальному запуску и файнтюну - в документации Unsloth.


🟡Набор моделей
🟡Документация


@ai_machinelearning_big_data

#AI #ML #GPTOSS #GGUF #Unsloth
Please open Telegram to view this post
VIEW IN TELEGRAM
7👍6🔥4
Media is too big
VIEW IN TELEGRAM
Какие планы на 16 августа?

Освобождайте календарь, в этот день ИТ-пикник — фестиваль для опытных ИТ-специалистов. Будет лекторий «Наука руками инженеров»‎ – обсудят как рождаются технологии: через эксперименты, гипотезы, научный подход и рискованные идеи.

Иван Оселедец, профессор РАН, выступит с темой об эволюции мультимодальных и мультиагентных систем, а Александр Петюшко, профессор университета США, расскажет, как устроено автономное вождение. Кроме лекций, интерактивов и нетворкинга для вас выступят артисты. На фестивале Диана Арбенина впервые вживую презентует трибьют-альбом. PLC, Tritia, Лилу, Тося Чайкина и ПОЛ ПУНШ исполнят ее известные треки.

Будут еще другие известные музыканты и секретный артист. Рекомендуем размяться, чтобы петь и танцевать от души.

Приходите с семьей и друзьями. Подробности и билеты — на сайте ИТ-пикника.
3👍1🔥1
🐉 Windmill — open-source платформа для разработки внутренних инструментов, которая превращает скрипты в готовые API, фоновые задачи и веб-интерфейсы. Проект позиционируется как альтернатива коммерческим решениям вроде Retool или Superblocks, но с акцентом на гибкость и self-hosted развёртывание.

Интересно реализована идея автоматической генерации UI: достаточно написать скрипт на Python, TypeScript, Go или Bash и Windmill создаст для него веб-форму с параметрами. Готовые скрипты можно комбинировать в сложные workflows или встраивать в low-code приложения. Под капотом — Rust, Postgres и sandbox-исполнение через nsjail для безопасности.

🤖 GitHub

@pythonl
7🔥7👍4
🛞 CrossHair — необычный инструмент для анализа Python-кода, который использует символьное выполнение для поиска ошибок. Вместо традиционных тестов он проверяет корректность функций, анализируя их поведение на основе аннотаций типов и контрактов.

Под капотом работает SMT-решатель, который ищет входные данные, нарушающие условия. Например, может автоматически обнаружить, что ваша функция падает на отрицательных числах, хотя в контракте указано x: PositiveInt. Интегрируется с Hypothesis и популярными IDE.

🤖 GitHub

@pythonl
3🔥3👍2
⚠️ Внимание: фишинг-атака на разработчиков Python. Злоумышленники рассылают поддельные письма от имени PyPI с домена pypj.org, требуя "подтвердить email".

Уже пострадал популярный пакет num2words (3M+ загрузок/месяц) — через захваченные аккаунты были выпущены вредоносные обновления. Атака повторяет недавний инцидент с NPM, где скомпрометировали пакеты с 100M+ загрузок в неделю.

🔗 Ссылка - *клик*

@pythonl
😢174👍2🔥2