⚡️ Wavelet Matrix - структура данных, которая делает сложные запросы быстрыми
Wavelet Matrix позволяет хранить последовательности так,
чтобы работать с ними молниеносно и компактно.
🔥 Что умеет библиотека:
- rank - сколько раз элемент встречается до позиции
- select - где находится k-е вхождение элемента
- quantile - k-й по величине элемент на отрезке
- top-k - самые частые элементы на диапазоне
И всё это — за логарифмическое время и с экономией памяти.
Чем полезен
- работает быстрее, чем наивные структуры
- меньше памяти, чем обычные массивы
- подходит для поиска, индексирования, сжатия, аналитики
Wavelet Matrix - это пример того,
как «умные» структуры данных дают реальные ускорения,
а не просто красивая теория.
Если интересуешься алгоритмами -
этот репозиторий точно стоит сохранить.
Репозиторий: https://github.com/math-hiyoko/wavelet-matrix
@pythonl
Wavelet Matrix позволяет хранить последовательности так,
чтобы работать с ними молниеносно и компактно.
🔥 Что умеет библиотека:
- rank - сколько раз элемент встречается до позиции
- select - где находится k-е вхождение элемента
- quantile - k-й по величине элемент на отрезке
- top-k - самые частые элементы на диапазоне
И всё это — за логарифмическое время и с экономией памяти.
Чем полезен
- работает быстрее, чем наивные структуры
- меньше памяти, чем обычные массивы
- подходит для поиска, индексирования, сжатия, аналитики
Wavelet Matrix - это пример того,
как «умные» структуры данных дают реальные ускорения,
а не просто красивая теория.
Если интересуешься алгоритмами -
этот репозиторий точно стоит сохранить.
Репозиторий: https://github.com/math-hiyoko/wavelet-matrix
@pythonl
👍14❤6🔥3
🧮 CoolCalculator: Мини-язык программирования для вычислений
CoolCalculator — это консольный калькулятор, который поддерживает пользовательские переменные и функции, рекурсию и локальные области видимости. Он предназначен для изучения парсинга и оценки выражений, а не только для численных вычислений.
🚀Основные моменты:
- Поддержка пользовательских переменных и функций
- Рекурсивные вызовы и перегрузка функций
- Многострочный ввод и последовательное выполнение
- Автоматическое создание несуществующих переменных
- Удобный синтаксис для работы с выражениями
📌 GitHub: https://github.com/YaroslavPryatkin/CoolCalculator
CoolCalculator — это консольный калькулятор, который поддерживает пользовательские переменные и функции, рекурсию и локальные области видимости. Он предназначен для изучения парсинга и оценки выражений, а не только для численных вычислений.
🚀Основные моменты:
- Поддержка пользовательских переменных и функций
- Рекурсивные вызовы и перегрузка функций
- Многострочный ввод и последовательное выполнение
- Автоматическое создание несуществующих переменных
- Удобный синтаксис для работы с выражениями
📌 GitHub: https://github.com/YaroslavPryatkin/CoolCalculator
❤5👍4🔥2
📄🚀 Qwen-Doc: Открытые проекты по пониманию документов
Qwen-Doc — это репозиторий, посвященный ИИ для работы с документами, разработанный командой Tongyi-Zhiwen. Здесь собраны исследования и практики, направленные на улучшение обработки сложных документов с помощью современных технологий, включая обучение с подкреплением и долгосрочное понимание контекста.
🚀Основные моменты:
- Модели для долгосрочного понимания документов.
- Использование обучения с подкреплением для улучшения ИИ.
- Открытые данные и методологии для сообщества.
- Проекты QwenLong-L1 и QwenLong-L1.5 с передовыми алгоритмами.
- FRAMEWORK SPELL для автономного генерации обучающих данных.
📌 GitHub: https://github.com/Tongyi-Zhiwen/Qwen-Doc
#python
Qwen-Doc — это репозиторий, посвященный ИИ для работы с документами, разработанный командой Tongyi-Zhiwen. Здесь собраны исследования и практики, направленные на улучшение обработки сложных документов с помощью современных технологий, включая обучение с подкреплением и долгосрочное понимание контекста.
🚀Основные моменты:
- Модели для долгосрочного понимания документов.
- Использование обучения с подкреплением для улучшения ИИ.
- Открытые данные и методологии для сообщества.
- Проекты QwenLong-L1 и QwenLong-L1.5 с передовыми алгоритмами.
- FRAMEWORK SPELL для автономного генерации обучающих данных.
📌 GitHub: https://github.com/Tongyi-Zhiwen/Qwen-Doc
#python
❤8👍4🔥4🤩1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Год ChatGPT Plus бесплатно: экономим 20 000 рублей
Нашли рабочую лазейку в правилах OpenAI.
Вы получаете полноценный аккаунт без лимитов и с доступом ко всем топовым моделям.
Инструкция (займет 2 минуты):
1️⃣ Переходим на сервис временной почты: https://em.bjedu.tech/en/
2️⃣ Важно: в списке доменов выбираем erzi me.
3️⃣ Регистрируем новый аккаунт ChatGPT на этот адрес.
4️⃣ Получаем код подтверждения в почту - готово!
⚡️ Проверили, пока еще работает
Или всегда можно воспользоваться ботом в тг😂
@pythonl
Нашли рабочую лазейку в правилах OpenAI.
Вы получаете полноценный аккаунт без лимитов и с доступом ко всем топовым моделям.
Инструкция (займет 2 минуты):
1️⃣ Переходим на сервис временной почты: https://em.bjedu.tech/en/
2️⃣ Важно: в списке доменов выбираем erzi me.
3️⃣ Регистрируем новый аккаунт ChatGPT на этот адрес.
4️⃣ Получаем код подтверждения в почту - готово!
⚡️ Проверили, пока еще работает
Или всегда можно воспользоваться ботом в тг
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥28😢11❤7👍7
Владение Docker - навык, который отличает новичка от профи,
Сегодня почти всё разворачивается в контейнерах.
Если ты не умеешь работать с Docker, ты медленнее, зависим от чужих настроек и постоянно ловишь баги «у меня локально работает».
• как упаковывать проекты в контейнеры
• как поднимать целые системы за минуты
• как избегать типичных ошибок в продакшене
• как делать стабильные и повторяемые окружения
•в нем разобраны все возможные ошибки
Только практика и реальные кейсы от авторов Docker Академии- с нуля до уверенного уровня.
🎁 Скидка 40 процентов действует 48 часов
👉 Записывайся и сделай Docker своим настоящим рабочим инструментом.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤4🔥3😁3
Вместо тысячи одновременных задач делай очередь + фиксированное число воркеров.
Так ты:
- не убиваешь БД/внешний сервис шторма́м запросов
- контролируешь задержки
- получаешь естественный backpressure
Пример для I/O-нагрузки (HTTP запросы) с asyncio:
import asyncio
import aiohttp
from time import perf_counter
URLS = [
"https://example.com"
for _ in range(10_000) # много запросов под нагрузкой
]
MAX_CONCURRENCY = 100 # ограничиваем параллелизм
QUEUE_SIZE = 1_000 # ограничиваем длину очереди (backpressure)
async def worker(name: int, queue: asyncio.Queue, session: aiohttp.ClientSession):
while True:
url = await queue.get()
if url is None: # сигнал завершения
queue.task_done()
break
try:
async with session.get(url, timeout=5) as resp:
await resp.text() # или resp.read()
# здесь твоя логика обработки
except Exception as e:
# логируй, но не падай
print(f"[worker {name}] error: {e}")
queue.task_done()
async def main():
queue = asyncio.Queue(maxsize=QUEUE_SIZE)
async with aiohttp.ClientSession() as session:
# поднимаем ограниченное число воркеров
workers = [
asyncio.create_task(worker(i, queue, session))
for i in range(MAX_CONCURRENCY)
]
# кидаем задачи в очередь
for url in URLS:
await queue.put(url)
# шлём сигнал завершения воркерам
for _ in workers:
await queue.put(None)
# ждём, пока всё отработает
await queue.join()
# аккуратно завершаем воркеров
for w in workers:
await w
if __name__ == "__main__":
t0 = perf_counter()
asyncio.run(main())
print(f"Done in {perf_counter() - t0:.2f}s")
Суть приёма:
Вместо «одна корутина на каждый запрос» ты держишь фиксированный пул воркеров.
Очередь с maxsize работает как предохранитель: если бэкенд/БД не успевают, продюсер начинает тормозиться.
Такой подход гораздо стабильнее под всплесками трафика, чем голый gather на десятки тысяч задач.
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
❤12👍9🔥3
🚀 Модели IQuest-Coder-V1 для автономного программирования
IQuest-Coder-V1 — это семейство больших языковых моделей, предназначенных для улучшения автономного программирования и интеллектуального анализа кода. Модели используют инновационную многослойную парадигму обучения, обеспечивая выдающиеся результаты на ключевых бенчмарках.
🚀 Основные моменты:
- Достигает лучших результатов на SWE-Bench и других бенчмарках.
- Обучение на основе динамики изменений в репозиториях.
- Два специализированных направления: Thinking и Instruct модели.
- Поддержка контекста до 128K токенов.
- Эффективная архитектура с рекуррентным механизмом.
📌 GitHub: https://github.com/IQuestLab/IQuest-Coder-V1
#python
IQuest-Coder-V1 — это семейство больших языковых моделей, предназначенных для улучшения автономного программирования и интеллектуального анализа кода. Модели используют инновационную многослойную парадигму обучения, обеспечивая выдающиеся результаты на ключевых бенчмарках.
🚀 Основные моменты:
- Достигает лучших результатов на SWE-Bench и других бенчмарках.
- Обучение на основе динамики изменений в репозиториях.
- Два специализированных направления: Thinking и Instruct модели.
- Поддержка контекста до 128K токенов.
- Эффективная архитектура с рекуррентным механизмом.
📌 GitHub: https://github.com/IQuestLab/IQuest-Coder-V1
#python
❤5👍5🔥2
🚀 Умный плагин для Claude Code
Claude Workflow — это универсальный плагин, который включает специализированные агенты и навыки для автоматизации разработки программного обеспечения. Он помогает в координации задач, анализе кода, написании документации и обеспечении безопасности.
🚀 Основные моменты:
- 7 специализированных агентов для различных задач
- 6 знаний для улучшения проектирования и тестирования
- Поддержка нескольких стилей вывода через слэш-команды
- Автоматизация с помощью хуков для повышения безопасности и качества кода
📌 GitHub: https://github.com/CloudAI-X/claude-workflow
Claude Workflow — это универсальный плагин, который включает специализированные агенты и навыки для автоматизации разработки программного обеспечения. Он помогает в координации задач, анализе кода, написании документации и обеспечении безопасности.
🚀 Основные моменты:
- 7 специализированных агентов для различных задач
- 6 знаний для улучшения проектирования и тестирования
- Поддержка нескольких стилей вывода через слэш-команды
- Автоматизация с помощью хуков для повышения безопасности и качества кода
📌 GitHub: https://github.com/CloudAI-X/claude-workflow
❤8🔥3👍2😁2
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 talk-to-girlfriend-ai - AI-агент для помощи в переписке через Telegram
Это проект Telegram-бота/агента, который помогает придумывать умные и уместные ответы
в переписке — анализирует контекст и предлагает варианты ответа.
Что умеет AI:
- пишет ответы на основе диалога
- генерирует фразы для старта разговора
- помогает формулировать сообщения более интересно
- даёт советы, как поддерживать беседу
- умеет читать и отправлять сообщения через Telegram API
⚡️ Как работает:
- CLI-агент на TypeScript
- мост на Python для работы с Telegram
- AI-ядро (модель)
- semantic search для поиска подходящих фраз
📌 Репозиторий: https://github.com/arlanrakh/talk-to-girlfriend-ai
Это проект Telegram-бота/агента, который помогает придумывать умные и уместные ответы
в переписке — анализирует контекст и предлагает варианты ответа.
Что умеет AI:
- пишет ответы на основе диалога
- генерирует фразы для старта разговора
- помогает формулировать сообщения более интересно
- даёт советы, как поддерживать беседу
- умеет читать и отправлять сообщения через Telegram API
⚡️ Как работает:
- CLI-агент на TypeScript
- мост на Python для работы с Telegram
- AI-ядро (модель)
- semantic search для поиска подходящих фраз
📌 Репозиторий: https://github.com/arlanrakh/talk-to-girlfriend-ai
😁33🔥5❤4👍3😢1
📹 Загрузчик видео с YouTube и других платформ
tuitube — это текстовый интерфейс для загрузки видео с YouTube, 𝕏, Twitch, Instagram и Bilibili с использованием yt-dlp. Удобный инструмент для тех, кто предпочитает командную строку.
🚀 Основные моменты:
- Поддержка множества видео платформ
- Использует yt-dlp для загрузки
- Простой текстовый интерфейс
- Легко настраивается и использует командную строку
📌 GitHub: https://github.com/remorses/tuitube
#python
tuitube — это текстовый интерфейс для загрузки видео с YouTube, 𝕏, Twitch, Instagram и Bilibili с использованием yt-dlp. Удобный инструмент для тех, кто предпочитает командную строку.
🚀 Основные моменты:
- Поддержка множества видео платформ
- Использует yt-dlp для загрузки
- Простой текстовый интерфейс
- Легко настраивается и использует командную строку
📌 GitHub: https://github.com/remorses/tuitube
#python
👍21❤5🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
Нужно быстро поднять сервер под Python-проект без лишней возни?
Ставим системные пакеты, создаём отдельного пользователя, настраиваем venv, делаем systemd-сервис и сразу получаем автозапуск + рестарт при падении.
Идеально для FastAPI / Flask / любых API и ботов.
sudo apt update && sudo apt install -y python3-venv python3-pip nginx
sudo useradd -m -s /bin/bash app && sudo mkdir -p /opt/app && sudo chown -R app:app /opt/app
sudo -u app bash -lc 'cd /opt/app && python3 -m venv venv && ./venv/bin/pip install -U pip uvicorn fastapi'
sudo tee /etc/systemd/system/app.service >/dev/null <<'EOF'
[Unit]
After=network.target
[Service]
User=app
WorkingDirectory=/opt/app
ExecStart=/opt/app/venv/bin/uvicorn main:app --host 0.0.0.0 --port 8000
Restart=always
[Install]
WantedBy=multi-user.target
EOF
sudo systemctl daemon-reload
sudo systemctl enable --now app
sudo systemctl status app --no-pager
https://www.youtube.com/shorts/cbUNWU1Sbsc
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13❤10🤩6
This media is not supported in your browser
VIEW IN TELEGRAM
🎁 Дед Мороз Денис Носков тут подарки вам на +300к принёс! Заберёте?
Без лишних прелюдий, рассказываем:
💥 5000+ рабочих AI-шаблонов
💥 170+ AI-ассистентов
💥 3 годовые подписки на ВСЕ нейронки (стоимостью более 200 000₽)
💥 17+ локальных нейросетей
💥 готовые open-source решения под заработок
Всё это может стать вашим, ведь уже 17 января (суббота) в 12:00 по мск Денис Носков на своём бесплатном эфире будет раздавать эти подарки всем участникам!
Хотите тоже их получить?
Жмите на ссылку и регистрируйтесь:
👉🏼 https://neuroncourses.com/web2?utm_source=ch7
Помимо этого Денис расскажет, как вы можете собрать своё AI-агентство и продавать AI-решения по $1500+ за проект уже сейчас!
Без кода.
Без команды.
Без «разберитесь сами».
Это не лекция.
Это раздача активов и рабочей модели.
🎯 Эфир бесплатный.
🎁 Подарки ВСЕМ, кто будет до конца.
👉 https://t.iss.one/Neuron_PromtMaster_bot?start=ch7
Количество бесплатных мест ограничено.
Без лишних прелюдий, рассказываем:
Всё это может стать вашим, ведь уже 17 января (суббота) в 12:00 по мск Денис Носков на своём бесплатном эфире будет раздавать эти подарки всем участникам!
Хотите тоже их получить?
Жмите на ссылку и регистрируйтесь:
👉🏼 https://neuroncourses.com/web2?utm_source=ch7
Помимо этого Денис расскажет, как вы можете собрать своё AI-агентство и продавать AI-решения по $1500+ за проект уже сейчас!
Без кода.
Без команды.
Без «разберитесь сами».
Это не лекция.
Это раздача активов и рабочей модели.
🎯 Эфир бесплатный.
🎁 Подарки ВСЕМ, кто будет до конца.
👉 https://t.iss.one/Neuron_PromtMaster_bot?start=ch7
Количество бесплатных мест ограничено.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3😁3🔥2👍1
This media is not supported in your browser
VIEW IN TELEGRAM
Сохраняй себе это - и используй каждый раз, когда начинаешь новый Python-проект.
Перед тем как писать код, сделай 5 вещей:
- создай правильную структуру проекта
- подними виртуальное окружение
- закрепи зависимости (requirements/poetry)
- добавь линтер и форматтер, чтобы код сразу был норм
- вынеси секреты в .env, а не в код
Это экономит часы на дебаге и делает проект “взрослым” с первой минуты.
1) создать папку проекта
mkdir my_project && cd my_project
2) виртуальное окружение
python -m venv .venv
source .venv/bin/activate
3) базовые файлы
touch main.py requirements.txt .env .gitignore
4) gitignore + env
echo ".venv/
__pycache__/
.env
*.pyc" > .gitignore
# 5) полезный стартовый набор
pip install -U pip
pip install ruff black python-dotenv
https://www.youtube.com/shorts/lnKQ_2UjOfw
Please open Telegram to view this post
VIEW IN TELEGRAM
❤11👍4🔥2😁2
📢 ИИ из каждого утюга, а как им пользоваться-то?
Владение нейросетями — один из ключевых навыков для разработчика в 2026 году. И пока год только начинается, есть время накопить «опыт в ML» и подтвердить его в собственном резюме.
Научитесь применять ИИ на практике с бесплатным курсом Академии Selectel. На нем вы:
👉 развернете нейросети в облаке за 5 минут,
👉 создадите Telegram-бота для обработки полученных сообщений,
👉 познакомитесь с библиотекой от Hugging Face и задеплоите шаблон для генерации изображений на сервер с GPU.
А бонусом разберете актуальные нейросети в 2026 году и получите лайфхаки по генерации изображений.
Внутри курса — шесть блоков с инструкциями от экспертов Selectel, обзоры на Midjourney, DALL-E, Stable Diffusion и другие нейросети для разработчиков. Прокачивайте практические навыки абсолютно бесплатно ➡️
Владение нейросетями — один из ключевых навыков для разработчика в 2026 году. И пока год только начинается, есть время накопить «опыт в ML» и подтвердить его в собственном резюме.
Научитесь применять ИИ на практике с бесплатным курсом Академии Selectel. На нем вы:
👉 развернете нейросети в облаке за 5 минут,
👉 создадите Telegram-бота для обработки полученных сообщений,
👉 познакомитесь с библиотекой от Hugging Face и задеплоите шаблон для генерации изображений на сервер с GPU.
А бонусом разберете актуальные нейросети в 2026 году и получите лайфхаки по генерации изображений.
Внутри курса — шесть блоков с инструкциями от экспертов Selectel, обзоры на Midjourney, DALL-E, Stable Diffusion и другие нейросети для разработчиков. Прокачивайте практические навыки абсолютно бесплатно ➡️
❤4
⚡️ Все шпаргалки для программистов в одном месте.
Внутри много полезного: короткие, понятные подсказки по языкам, технологиям и фреймворкам.
Без регистрации и бесплатно.
https://overapi.com/
@pythonl
Внутри много полезного: короткие, понятные подсказки по языкам, технологиям и фреймворкам.
Без регистрации и бесплатно.
https://overapi.com/
@pythonl
❤4👍3🔥2
💼 ru-test-assignments - большая база реальных тестовых заданий от IT-компаний
ru-test-assignments - это открытая коллекция настоящих тестовых заданий, которые кандидаты получали на собеседованиях в российских IT-компаниях.
Без абстрактных задач «в вакууме» только то, что реально спрашивают.
Что внутри 👇
• Сотни заданий по направлениям:
Frontend, Backend, QA, Android, iOS, Data Science, DevOps
• Компании из топа рынка:
Avito, Яндекс, Тинькофф, Сбер, Ozon, VK и другие
• Разные языки и стеки:
Python, JavaScript, Go, Java, PHP, Ruby, C#
• Готовые задания можно прикреплять в портфолио (например, через Hexlet CV)
Почему это полезно:
- понимаешь реальные требования рынка
- тренируешься на задачах уровня интервью
- закрываешь пробелы в стеке
- усиливаешь портфолио без выдуманных кейсов
Отличный ресурс для подготовки к собеседованиям и оценки своего уровня.
https://github.com/Hexlet/ru-test-assignments
ru-test-assignments - это открытая коллекция настоящих тестовых заданий, которые кандидаты получали на собеседованиях в российских IT-компаниях.
Без абстрактных задач «в вакууме» только то, что реально спрашивают.
Что внутри 👇
• Сотни заданий по направлениям:
Frontend, Backend, QA, Android, iOS, Data Science, DevOps
• Компании из топа рынка:
Avito, Яндекс, Тинькофф, Сбер, Ozon, VK и другие
• Разные языки и стеки:
Python, JavaScript, Go, Java, PHP, Ruby, C#
• Готовые задания можно прикреплять в портфолио (например, через Hexlet CV)
Почему это полезно:
- понимаешь реальные требования рынка
- тренируешься на задачах уровня интервью
- закрываешь пробелы в стеке
- усиливаешь портфолио без выдуманных кейсов
Отличный ресурс для подготовки к собеседованиям и оценки своего уровня.
https://github.com/Hexlet/ru-test-assignments
❤7👍3🔥1