Python/ django
63.1K subscribers
2.29K photos
144 videos
48 files
3.03K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
Download Telegram
Поздравляем, вы на 1 шаг ближе к работе мечты 🥳

Осталось только прочитать этот пост, подписаться на канал и откликнуться на вакансию 😉

Avito Career — место, где Авито делится актуальными вакансиями и стажировками для бэкенд-разработчиков.

Подписывайтесь, чтобы найти ту самую работу
😁41😢1
🏎️ F1 Race Replay: Визуализация гонок Формулы 1 🏁

Приложение на Python для интерактивного воспроизведения гонок Формулы 1 с графическим интерфейсом. Позволяет отслеживать позиции гонщиков в реальном времени, отображать текущие круги и статус водителей, а также управлять воспроизведением с помощью удобных контролов.

🚀 Основные моменты:
- Визуализация гонок с реальными позициями на треке
- Живое обновление позиций гонщиков и их состояния
- Интерактивные элементы управления воспроизведением
- Подробная информация о телеметрии выбранных гонщиков
- Возможность настройки интерфейса и обработки данных

📌 GitHub: https://github.com/IAmTomShaw/f1-race-replay

#python
😁53👍1🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
📝 Как быстро объяснить проект коллеге, если не знаешь, с чего начать

Иногда проще ответить на вопросы новичка, чем структурировать рассказ самому. Но когда сервис большой, а процессов много, легко запутаться: что упомянуть первым, какие детали важны, а что можно оставить на потом.

Голосовой ИИ-помощник ГигаЧат подсказывает, как выстроить объяснение так, чтобы оно было понятным с первого раза.

📌 В итоге один короткий диалог превращается в ясное объяснение, которое не требует пересказывать всё снова. Слушаем!

@pythonl
3🔥3
Git Cheatsheet - коротко и по делу

Настройка
git config --global user.name "Name" — задать имя
git config --global user.email "email" — задать почту
git config --list — показать настройки

Старт
git init — создать репозиторий
git clone url — клонировать репо

Стейджинг и коммиты
git status — статус
git add . — добавить все изменения
git reset file — убрать из стейджа
git commit -m "msg" — коммит
git commit --amend — исправить последний коммит

Ветки
git branch — список
git branch name — создать
git checkout -b name — создать и перейти
git branch -d name — удалить

Merge и Rebase
git merge branch — слить ветку
git merge --abort — отменить
git rebase branch — перебазирование

История
git log --oneline — компактная история
git log --graph --all — граф
git diff — показать изменения

Откат
git restore file — вернуть файл
git reset --soft HEAD~1 — откатить коммит, сохранить изменения
git reset --hard HEAD~1 — откатить и удалить изменения
git clean -f — удалить лишние файлы

Удалённые репозитории
git remote -v — список
git push origin branch — запушить
git pull — получить изменения
git fetch — только забрать

Теги
git tag — список
git tag name — создать
git push origin --tags — отправить теги

Stash
git stash — сохранить изменения
git stash list — список
git stash apply — применить

Поиск и анализ
git blame file — кто менял строки
git grep "text" — поиск
git bisect — бинарный поиск бага

Продвинутое
git cherry-pick commit — взять коммит
git revert commit — отменить коммит через новый
git submodule add url — добавить сабмодуль

Полезно сохранить под рукой.
Please open Telegram to view this post
VIEW IN TELEGRAM
24👍8🔥5
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 PYTHON В DOCKER: УСКОРЯЕМ СБОРКУ!

Если ваш Python-приложение в Docker работает медленно при старте или «греет» CPU, проблема часто в том, что Docker пересобирает зависимости каждый раз.
Хитрый приём: замораживайте зависимости в отдельный слой и используйте .dockerignore, чтобы локальные файлы не ломали кеш.
Так Docker перестаёт пересобирать pip-пакеты и старт проекта ускоряется в разы.


для оптимизации Python-сборки
FROM python:3.12-slim

WORKDIR /app

Слой с зависимостями (кешируется!)

COPY requirements.txt .

RUN pip install --no-cache-dir -r requirements.txt

Теперь копируем код (не ломает кеш pip)

COPY . .

CMD ["python", "main.py"]
9👍6🔥3
🖥 Django 6.0 вышел - крупное обновление фреймворка

Вышел Django 6.0, и это одно из самых насыщенных обновлений за последнее время. Релиз добавляет функциональность, которую разработчики долго закрывали сторонними библиотеками или кастомными решениями.

Что нового и действительно важно:

Поддержка template partials из коробки
Теперь Django умеет частичные шаблоны на уровне фреймворка. Это упрощает структуру HTML, повышает переиспользуемость и делает шаблоны чище и понятнее без лишних include-хаков.

Нативный фреймворк для фоновых задач
В Django появился встроенный механизм для background tasks. Для многих проектов это означает, что Celery или RQ больше не обязательны для базовых задач — отложенные и асинхронные операции можно реализовать стандартными средствами.

Встроенная система Content Security Policy (CSP)
Django 6.0 получил полноценную поддержку CSP. Это серьёзный шаг в сторону безопасности по умолчанию и защита от XSS и других атак без внешних middleware.

Современный email API с нормальной Unicode-поддержкой
Работа с email стала более предсказуемой и дружелюбной к Unicode, что особенно важно для международных проектов и сложных шаблонов писем.

Жизненный цикл версий
Django 5.2 больше не имеет mainstream-поддержки. Разработчикам рекомендуется переходить на 6.0, чтобы получать новые возможности, обновления безопасности и улучшения платформы.

Django продолжает двигаться в сторону «batteries included», но делает это аккуратно и прагматично. Django 6.0 снижает зависимость от внешних библиотек, усиливает безопасность и делает повседневную разработку заметно удобнее.

Это релиз, который стоит внимательно изучить и запланировать апгрейд.

https://www.djangoproject.com/weblog/2025/dec/03/django-60-released/

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2515🔥7😁1
📝 Редактирование PDF с помощью ИИ 🚀

Nano PDF - это CLI инструмент для редактирования PDF-документов с использованием естественных языковых запросов. Он позволяет изменять слайды, добавлять новые и сохранять текстовый слой благодаря OCR. Инструмент использует модель Gemini 3 Pro Image для быстрого и качественного редактирования.

🚀 Основные моменты:
- Редактирование слайдов по текстовым командам
- Генерация новых слайдов в стиле существующих
- Поддержка многопоточной обработки
- Сохранение текстового слоя PDF

📌 GitHub: https://github.com/gavrielc/Nano-PDF

#python

@pythonl
🔥6😢32
🌍🤖 GigaWorld-0: Модели мира

GigaWorld-0 - это унифицированная платформа для обучения Vision-Language-Action, использующая генерацию видео и 3D моделирование. Она обеспечивает создание разнообразных и реалистичных последовательностей, что делает её мощным инструментом для разработки эмбодированных ИИ.

🚀Основные моменты:
- Интеграция видео и 3D генерации для физической реалистичности.
- Поддержка текстовых подсказок для генерации видео.
- Модели доступны на Hugging Face для быстрого старта.
- Открытый исходный код с лицензией Apache 2.0.

📌 GitHub: https://github.com/open-gigaai/giga-world-0

#python
6👍1🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
💀➡️ Большинство кодеров не знают про это ускорение в Python

Одна из самых недооценённых оптимизаций в Python — вынесение повторяющихся вычислений в локальные переменные.
Причина проста: доступ к локальной переменной в CPython *в 2–3 раза быстрее*, чем к глобальной или атрибуту модуля.

Особенно важно в циклах и горячих участках кода.


import math

# Медленнее: math.sqrt вызывается через глобальное пространство имён
def slow(nums):
return [math.sqrt(x) for x in nums]

# Быстрее: ссылка на функцию закэширована в локальной переменной
def fast(nums):
sqrt = math.sqrt
return [sqrt(x) for x in nums]

# Ещё пример: длину списка лучше сохранить локально
def sum_fast(nums):
total = 0
ln = len(nums) # локальная ссылка быстрее
for i in range(ln):
total += nums[i]
return total
👍96🔥6🤩1
Выходим на новый уровень для удобной работы над ИТ-продуктами

Свежий релиз SourceCraft — когда AI, Git и безопасность работают синхронно.
Специальная ИИ-система проверяет безопасность кода и оформляет найденные уязвимости в карточки прямо на платформе.

Для команд:
— поддержка Gitlab CI/CD YAML, удобные инструменты релизов и web-интерфейс для решения конфликтов в PR.

Для безопасности:

— дашборд уязвимостей по всем репозиториям, страница Code Scanning для SAST, rescan и список библиотек с уязвимостями в SCA.
— пройдена оценка соответствия требованиям ФЗ-152, PCI DSS, ГОСТ 57580.

Обновлён UI для CI/CD и появились Telegram-уведомления. Работаем дальше

Подробнее в канале
5👍3🔥3😁2
Forwarded from Machinelearning
📌 Андрей Карпаты написал ИИ-пайплайн для проверки IT-прогнозов десятилетней давности.

Андрей опубликовал разбор своего нового пет-проекта. Он создал систему, которая анализирует архивные треды Hacker News и с помощью LLM проверяет, сбылись ли предсказания пользователей спустя 10 лет.

Проект использует так называемые «послезнание» (hindsight), чтобы сравнивать старые комментарии с реальностью, выявлять визионеров и находить самые громкие ошибки.

Технически решение представляет собой пайплайн, который собирает данные через API Algolia и обрабатывает их с помощью структурированного промпта.

Тестовый прогон на 930 обсуждениях (месячный архив статей Hacker News) занял около часа и обошелся всего в 58 долларов.

На выходе система генерирует статический сайт с «Залом славы» аналитиков и рейтингом точность прогнозов.

Исходный вайб-код проекта, по традиции - в открытом доступе.


@ai_machinelearning_big_data

#AI #ML #LLM #Tutorial #Karpaty
Please open Telegram to view this post
VIEW IN TELEGRAM
5😢2👍1🔥1