Python/ django
63K subscribers
2.3K photos
145 videos
48 files
3.03K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
Download Telegram
🖊️ Google Research представила InkSight — систему, которая превращает сфотографанный рукописный текст в настоящие *цифровые рукописные данные*.

Что делает InkSight?

Берёт фото тетрадей, заметок или документов и переводит их в «цифровое перо» - данные, которыми можно редактировать, искать, хранить.

🧠 Под капотом:
• Vision Transformer (ViT) + mT5
• Обучение на чтение и письмо одновременно
• Без специальных планшетов - работает с обычными фото

💡 Возможности:
Обработка слов и целых страниц
Работает с разными языками и стилями письма
Корректно извлекает текст даже на шумном фоне
Результат - редактируемый векторный «ink», а не просто картинка

То есть InkSight — мост между бумажной реальностью и цифровым миром: сделал фото заметок → получил полный цифровой текст, пригодный для поиска и редактирования.

🔗 В репозитории доступны веса модели, датасет и пример кода:

github.com/google-research/inksight

@pythonl
13👍7🔥5
📌 Первые впечатления от системы фоновых задач в Django

В свежем разборе объясняется, как Django наконец получает встроенный инструмент для фоновой обработки заданий без необходимости тянуть сторонние библиотеки вроде Celery.

🔹 Что это такое
Django Background Tasks - новый официально поддерживаемый механизм для:
- отложенного выполнения задач (delayed jobs),
- периодических задач (cron-style),
- асинхронной фоновой обработки в рамках приложения.

🔹 Почему это важно
Раньше разработчикам приходилось выбирать сторонние решения (Celery, RQ, Dramatiq) с дополнительной инфраструктурой (Redis/RabbitMQ и т.п.). Теперь у Django будет собственный, простой и интегрированный способ:
- выполнять задачи после ответа пользователю,
- обрабатывать тяжёлые операции вне запроса,
- запускать периодические задачи без внешних кронов.

🔹 Как это работает
- Вы определяете задачу как обычную Python-функцию.
- Django регистрирует её в очереди внутреннего раннера.
- Фоновый воркер выполняет такие задачи по расписанию или сразу - без внешнего брокера.

🔹 Плюсы по сравнению с альтернативами
встроенная интеграция с ORM и Django-экосистемой
нет необходимости настраивать отдельный брокер
ожидаемая простота и знакомый синтаксис для Django-разработчиков

🔹 О чём ещё в статье
- примеры кода с определением фоновых задач;
- как запускать и мониторить воркеры;
- ограничения и когда всё же стоит использовать более мощные системы.

📌 В сумме: Django делает шаг к тому, чтобы базовая фонвая обработка стала простой и доступной из коробки - это ускоряет разработку и снижает операционную сложность для большинства проектов.

https://roam.be/notes/2025/a-first-look-at-djangos-new-background-tasks/

@pythonl
🔥23👍97
Поздравляем, вы на 1 шаг ближе к работе мечты 🥳

Осталось только прочитать этот пост, подписаться на канал и откликнуться на вакансию 😉

Avito Career — место, где Авито делится актуальными вакансиями и стажировками для бэкенд-разработчиков.

Подписывайтесь, чтобы найти ту самую работу
😁51😢1
🏎️ F1 Race Replay: Визуализация гонок Формулы 1 🏁

Приложение на Python для интерактивного воспроизведения гонок Формулы 1 с графическим интерфейсом. Позволяет отслеживать позиции гонщиков в реальном времени, отображать текущие круги и статус водителей, а также управлять воспроизведением с помощью удобных контролов.

🚀 Основные моменты:
- Визуализация гонок с реальными позициями на треке
- Живое обновление позиций гонщиков и их состояния
- Интерактивные элементы управления воспроизведением
- Подробная информация о телеметрии выбранных гонщиков
- Возможность настройки интерфейса и обработки данных

📌 GitHub: https://github.com/IAmTomShaw/f1-race-replay

#python
😁53👍1🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
📝 Как быстро объяснить проект коллеге, если не знаешь, с чего начать

Иногда проще ответить на вопросы новичка, чем структурировать рассказ самому. Но когда сервис большой, а процессов много, легко запутаться: что упомянуть первым, какие детали важны, а что можно оставить на потом.

Голосовой ИИ-помощник ГигаЧат подсказывает, как выстроить объяснение так, чтобы оно было понятным с первого раза.

📌 В итоге один короткий диалог превращается в ясное объяснение, которое не требует пересказывать всё снова. Слушаем!

@pythonl
3🔥3
Git Cheatsheet - коротко и по делу

Настройка
git config --global user.name "Name" — задать имя
git config --global user.email "email" — задать почту
git config --list — показать настройки

Старт
git init — создать репозиторий
git clone url — клонировать репо

Стейджинг и коммиты
git status — статус
git add . — добавить все изменения
git reset file — убрать из стейджа
git commit -m "msg" — коммит
git commit --amend — исправить последний коммит

Ветки
git branch — список
git branch name — создать
git checkout -b name — создать и перейти
git branch -d name — удалить

Merge и Rebase
git merge branch — слить ветку
git merge --abort — отменить
git rebase branch — перебазирование

История
git log --oneline — компактная история
git log --graph --all — граф
git diff — показать изменения

Откат
git restore file — вернуть файл
git reset --soft HEAD~1 — откатить коммит, сохранить изменения
git reset --hard HEAD~1 — откатить и удалить изменения
git clean -f — удалить лишние файлы

Удалённые репозитории
git remote -v — список
git push origin branch — запушить
git pull — получить изменения
git fetch — только забрать

Теги
git tag — список
git tag name — создать
git push origin --tags — отправить теги

Stash
git stash — сохранить изменения
git stash list — список
git stash apply — применить

Поиск и анализ
git blame file — кто менял строки
git grep "text" — поиск
git bisect — бинарный поиск бага

Продвинутое
git cherry-pick commit — взять коммит
git revert commit — отменить коммит через новый
git submodule add url — добавить сабмодуль

Полезно сохранить под рукой.
Please open Telegram to view this post
VIEW IN TELEGRAM
26👍8🔥5
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 PYTHON В DOCKER: УСКОРЯЕМ СБОРКУ!

Если ваш Python-приложение в Docker работает медленно при старте или «греет» CPU, проблема часто в том, что Docker пересобирает зависимости каждый раз.
Хитрый приём: замораживайте зависимости в отдельный слой и используйте .dockerignore, чтобы локальные файлы не ломали кеш.
Так Docker перестаёт пересобирать pip-пакеты и старт проекта ускоряется в разы.


для оптимизации Python-сборки
FROM python:3.12-slim

WORKDIR /app

Слой с зависимостями (кешируется!)

COPY requirements.txt .

RUN pip install --no-cache-dir -r requirements.txt

Теперь копируем код (не ломает кеш pip)

COPY . .

CMD ["python", "main.py"]
9👍6🔥3
🖥 Django 6.0 вышел - крупное обновление фреймворка

Вышел Django 6.0, и это одно из самых насыщенных обновлений за последнее время. Релиз добавляет функциональность, которую разработчики долго закрывали сторонними библиотеками или кастомными решениями.

Что нового и действительно важно:

Поддержка template partials из коробки
Теперь Django умеет частичные шаблоны на уровне фреймворка. Это упрощает структуру HTML, повышает переиспользуемость и делает шаблоны чище и понятнее без лишних include-хаков.

Нативный фреймворк для фоновых задач
В Django появился встроенный механизм для background tasks. Для многих проектов это означает, что Celery или RQ больше не обязательны для базовых задач — отложенные и асинхронные операции можно реализовать стандартными средствами.

Встроенная система Content Security Policy (CSP)
Django 6.0 получил полноценную поддержку CSP. Это серьёзный шаг в сторону безопасности по умолчанию и защита от XSS и других атак без внешних middleware.

Современный email API с нормальной Unicode-поддержкой
Работа с email стала более предсказуемой и дружелюбной к Unicode, что особенно важно для международных проектов и сложных шаблонов писем.

Жизненный цикл версий
Django 5.2 больше не имеет mainstream-поддержки. Разработчикам рекомендуется переходить на 6.0, чтобы получать новые возможности, обновления безопасности и улучшения платформы.

Django продолжает двигаться в сторону «batteries included», но делает это аккуратно и прагматично. Django 6.0 снижает зависимость от внешних библиотек, усиливает безопасность и делает повседневную разработку заметно удобнее.

Это релиз, который стоит внимательно изучить и запланировать апгрейд.

https://www.djangoproject.com/weblog/2025/dec/03/django-60-released/

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2715🔥7😁1
📝 Редактирование PDF с помощью ИИ 🚀

Nano PDF - это CLI инструмент для редактирования PDF-документов с использованием естественных языковых запросов. Он позволяет изменять слайды, добавлять новые и сохранять текстовый слой благодаря OCR. Инструмент использует модель Gemini 3 Pro Image для быстрого и качественного редактирования.

🚀 Основные моменты:
- Редактирование слайдов по текстовым командам
- Генерация новых слайдов в стиле существующих
- Поддержка многопоточной обработки
- Сохранение текстового слоя PDF

📌 GitHub: https://github.com/gavrielc/Nano-PDF

#python

@pythonl
🔥6😢42
🌍🤖 GigaWorld-0: Модели мира

GigaWorld-0 - это унифицированная платформа для обучения Vision-Language-Action, использующая генерацию видео и 3D моделирование. Она обеспечивает создание разнообразных и реалистичных последовательностей, что делает её мощным инструментом для разработки эмбодированных ИИ.

🚀Основные моменты:
- Интеграция видео и 3D генерации для физической реалистичности.
- Поддержка текстовых подсказок для генерации видео.
- Модели доступны на Hugging Face для быстрого старта.
- Открытый исходный код с лицензией Apache 2.0.

📌 GitHub: https://github.com/open-gigaai/giga-world-0

#python
9👍1🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
💀➡️ Большинство кодеров не знают про это ускорение в Python

Одна из самых недооценённых оптимизаций в Python — вынесение повторяющихся вычислений в локальные переменные.
Причина проста: доступ к локальной переменной в CPython *в 2–3 раза быстрее*, чем к глобальной или атрибуту модуля.

Особенно важно в циклах и горячих участках кода.


import math

# Медленнее: math.sqrt вызывается через глобальное пространство имён
def slow(nums):
return [math.sqrt(x) for x in nums]

# Быстрее: ссылка на функцию закэширована в локальной переменной
def fast(nums):
sqrt = math.sqrt
return [sqrt(x) for x in nums]

# Ещё пример: длину списка лучше сохранить локально
def sum_fast(nums):
total = 0
ln = len(nums) # локальная ссылка быстрее
for i in range(ln):
total += nums[i]
return total
👍159🔥6🤩1
Выходим на новый уровень для удобной работы над ИТ-продуктами

Свежий релиз SourceCraft — когда AI, Git и безопасность работают синхронно.
Специальная ИИ-система проверяет безопасность кода и оформляет найденные уязвимости в карточки прямо на платформе.

Для команд:
— поддержка Gitlab CI/CD YAML, удобные инструменты релизов и web-интерфейс для решения конфликтов в PR.

Для безопасности:

— дашборд уязвимостей по всем репозиториям, страница Code Scanning для SAST, rescan и список библиотек с уязвимостями в SCA.
— пройдена оценка соответствия требованиям ФЗ-152, PCI DSS, ГОСТ 57580.

Обновлён UI для CI/CD и появились Telegram-уведомления. Работаем дальше

Подробнее в канале
5👍3🔥3😁2
Forwarded from Machinelearning
📌 Андрей Карпаты написал ИИ-пайплайн для проверки IT-прогнозов десятилетней давности.

Андрей опубликовал разбор своего нового пет-проекта. Он создал систему, которая анализирует архивные треды Hacker News и с помощью LLM проверяет, сбылись ли предсказания пользователей спустя 10 лет.

Проект использует так называемые «послезнание» (hindsight), чтобы сравнивать старые комментарии с реальностью, выявлять визионеров и находить самые громкие ошибки.

Технически решение представляет собой пайплайн, который собирает данные через API Algolia и обрабатывает их с помощью структурированного промпта.

Тестовый прогон на 930 обсуждениях (месячный архив статей Hacker News) занял около часа и обошелся всего в 58 долларов.

На выходе система генерирует статический сайт с «Залом славы» аналитиков и рейтингом точность прогнозов.

Исходный вайб-код проекта, по традиции - в открытом доступе.


@ai_machinelearning_big_data

#AI #ML #LLM #Tutorial #Karpaty
Please open Telegram to view this post
VIEW IN TELEGRAM
9😢3🔥2👍1
This media is not supported in your browser
VIEW IN TELEGRAM
🤯💣 PYTHON ТРЮК ПО УСКОРЕНИЮ #python

Совет по Python: если в цикле много обращений к атрибутам объекта или модуля — вынеси их в локальную переменную.

Доступ к локалам работает быстрее, чем к атрибутам, поэтому такой приём иногда ускоряет код на 20–50 процентов.


#медленно — каждый проход лезет в атрибут
for i in range(10_000_000):
x = obj.value

#быстрее — сохрани ссылку заранее
val = obj.value
for i in range(10_000_000):
x = val

#ещё пример — кешируем функцию
import math
sqrt = math.sqrt
for i in range(1_000_000):
r = sqrt(i)
🔥165👍5😁1
Аналитика, которая скрывает больше, чем кажется

Каждый день мы пользуемся продуктами, за которыми стоят тщательно продуманные эксперименты и A/B-тесты. Мы видим только интерфейс, а аналитики изучают поведение миллионов пользователей и формируют гипотезы на основе собранных данных.

Даже мелкие изменения — например, баннер, цвет кнопки или порядок элементов на странице — могут сильно повлиять на бизнес-показатели. Именно специалисты по данным помогают компаниям принимать решения, опираясь на такие эксперименты.

Развивайте свои навыки в аналитике данных с курсом онлайн-школы karpovꓸcourses, созданной одним из самых читаемых аналитиков России по данным NEWHR — Анатолием Карповым.

Обучение максимально приближено к реальной работе: за 5,5 месяцев вы освоите полный стек навыков — от SQL и Python до A/B-тестирования.

Преподают практики, а не теоретики: Анатолий Карпов, Роман Бунин, Анастасия Кузнецова и Анастасия Зеленова — востребованные аналитики, которые точно знают, какие компетенции помогут построить успешную карьеру.

После большинства онлайн-курсов новичкам сложно устроиться на первую работу — работодатели не всегда доверяют формальному образованию. С выпускниками karpovꓸcourses ситуация другая: их ценят на рынке, а во многих вакансиях прямо указывают, что кандидаты после karpovꓸcourses получают приоритет при отборе

Освойте навыки, которые действительно ценят работодатели: https://clc.to/erid_2W5zFJUaHB6

Реклама. ООО "КАРПОВ КУРСЫ". ИНН 7811764627. erid: 2W5zFJUaHB6
2
🎧 Модель аудиоразмышлений Step-Audio-R1

Step-Audio-R1 — первая аудиомодель, которая преодолевает проблему "обратного масштабирования", улучшая производительность при увеличении вычислительных ресурсов. Используя метод MGRD, модель фокусируется на акустическом анализе, что позволяет ей эффективно обрабатывать аудиоданные.

🚀 Основные моменты:
- Успешно решает проблему "обратного масштабирования"
- Сравнима с Gemini 3 по аудиобенчмаркам
- Инновационный подход к обучению через акустические особенности
- Доступна для использования на Hugging Face и ModelScope

📌 GitHub: https://github.com/stepfun-ai/Step-Audio-R1

@pythonl
9👍2🔥1
🖥 Как уменьшить Docker-образ в 10+ раз - понятный и практичный разбор.

Размер Docker-образа - это не косметика.
Он напрямую влияет на:
- скорость CI/CD
- время деплоя
- cold start контейнеров
- расходы на storage и трафик

В примере ниже образ удалось сократить с 588 MB до 47.7 MB - почти на 92%.
Вот какие приёмы реально дают эффект.

1) Выбор базового образа - самое важное решение

Полный python:3.9 тянет за собой:
- лишние системные утилиты
- документацию
- dev-пакеты

Переход на python:3.9-alpine:
- в разы меньше размер
- быстрее скачивание
- меньше attack surface

Это первый и самый крупный выигрыш.

2) Оптимизация слоёв Docker

Каждый RUN, COPY, ADD - это новый слой.
Много мелких инструкций = раздув образа.

Правило:
- объединяй связанные команды
- удаляй временные файлы в том же RUN

Меньше слоёв - меньше вес - быстрее сборка.

3) .dockerignore - бесплатная оптимизация, которую часто забывают


Без .dockerignore в build context улетает всё:
- .venv
- .cache
- .git
- временные файлы

Это:
- увеличивает размер контекста
- замедляет сборку
- иногда ломает кеширование

.dockerignore должен быть всегда. Без исключений.

4) Multi-stage build - must-have для продакшена

Одна из самых мощных техник.

Идея простая:
- stage 1 - сборка, компиляция, зависимости
- stage 2 - только то, что нужно для запуска

В финальном образе:
- нет build-инструментов
- нет лишних библиотек
- только runtime

Результат:
- меньше размер
- меньше уязвимостей
- быстрее старт

Итоговый эффект:
- 588 MB -> 47.7 MB
- −91.89% размера
- быстрее CI
- быстрее деплой
- дешевле инфраструктура

Главный вывод:
маленькие оптимизации накапливаются.

Каждый сэкономленный мегабайт:
- ускоряет каждый pull
- ускоряет каждый deploy
- масштабируется вместе с вашей системой

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2312🔥4😁4
📌 Подробная шпаргалка по командам Docker

Удобный и практичный референс для повседневной работы с Docker: образы, контейнеры, сети, тома и Docker Compose.

🐋 Общие команды Docker

- docker --version — версия Docker
- docker info — информация о системе Docker
- docker help — список доступных команд
- docker <command> --help — помощь по конкретной команде

📦 Работа с образами

- docker pull <image> — скачать образ из реестра
- docker images — список локальных образов
- docker build -t name:tag . — собрать образ из Dockerfile
- docker tag <image> <repo>:<tag> — назначить тег образу
- docker rmi <image> — удалить образ
- docker image prune — удалить неиспользуемые образы
- docker image prune -a — удалить все неиспользуемые, включая невисячие

🚀 Контейнеры: запуск и управление

- docker run <image> — запустить контейнер
- docker run -d <image> — запуск в фоне
- docker run -it <image> bash — интерактивный режим
- docker ps — активные контейнеры
- docker ps -a — все контейнеры
- docker stop <container> — остановить контейнер
- docker start <container> — запустить остановленный
- docker restart <container> — перезапуск
- docker rm <container> — удалить контейнер
- docker rm -f <container> — принудительно удалить
- docker logs <container> — логи контейнера
- docker exec -it <container> bash — войти внутрь контейнера
- docker inspect <container> — подробная информация (JSON)

🧹 Очистка и обслуживание

- docker container prune — удалить все остановленные контейнеры
- docker image prune — удалить неиспользуемые образы
- docker volume prune — удалить неиспользуемые тома
- docker network prune — удалить неиспользуемые сети
- docker system prune — очистить всё неиспользуемое
- docker system prune -a — максимально агрессивная очистка
- docker system df — использование диска Docker’ом

📊 Мониторинг и отладка

- docker stats — использование CPU и памяти контейнерами
- docker top <container> — процессы внутри контейнера
- docker diff <container> — изменения файловой системы контейнера

🌐 Сети Docker

- docker network ls — список сетей
- docker network inspect <network> — информация о сети
- docker network create <name> — создать сеть
- docker network rm <name> — удалить сеть

💾 Docker Volumes


- docker volume ls — список томов
- docker volume inspect <volume> — информация о томе
- docker volume create <name> — создать том
- docker volume rm <name> — удалить том

⚙️ Docker Compose

- docker compose up — запустить сервисы
- docker compose up -d — запуск в фоне
- docker compose down — остановить и удалить всё
- docker compose build — пересобрать образы
- docker compose pull — скачать образы
- docker compose logs — логи всех сервисов
- docker compose ps — статус сервисов
- docker compose restart — перезапуск

🧠 Полезные советы

- Используй --rm, чтобы контейнер удалялся после выполнения
- Проверяй размер Docker-данных через docker system df
- Для отладки всегда полезен docker inspect
- Регулярно чисти систему, чтобы Docker не съел весь диск

Эта шпаргалка закрывает 90% повседневных задач при работе с Docker - от локальной разработки до продакшена.

@pythonl
20🔥6👍5
🚀 Интерактивный помощник для Кодинга Mistral Vibe

Mistral Vibe - это командный интерфейс для взаимодействия с кодом, который позволяет использовать естественный язык для выполнения задач.

Он предлагает мощные инструменты для работы с файлами, поиска кода и управления версиями, обеспечивая удобный и интуитивный опыт.

🚀 Основные моменты:
- Интерактивный чат с AI для выполнения запросов.
- Набор инструментов для манипуляции файлами и выполнения команд.
- Автоматическое сканирование структуры проекта для контекстной информации.
- Высокая настраиваемость через конфигурационные файлы.
- Поддержка UNIX и Windows.

📌 GitHub: https://github.com/mistralai/mistral-vibe

@pythonl
🔥4👍1
🖼️ Qwen-Image-Layered: Модель для многослойной обработки изображений

Qwen-Image-Layered позволяет разбирать изображения на несколько RGBA слоев, обеспечивая возможность редактирования каждого слоя независимо. Это открывает новые горизонты для редактирования, позволяя выполнять операции с высоким качеством, такие как изменение размера и перекраска, без влияния на другие элементы.

🚀Основные моменты:
- Декомпозиция изображений на независимые слои.
- Поддержка высококачественного редактирования.
- Гибкость в количестве слоев для декомпозиции.
- Возможность редактирования с сохранением целостности других слоев.
- Интуитивно понятный интерфейс для работы с изображениями.

📌 GitHub: https://github.com/QwenLM/Qwen-Image-Layered

#python
3🤩2👍1