Python Projects & Resources
57.4K subscribers
778 photos
342 files
330 links
Perfect channel to learn Python Programming 🇮🇳
Download Free Books & Courses to master Python Programming
- Free Courses
- Projects
- Pdfs
- Bootcamps
- Notes

Admin: @Coderfun
Download Telegram
Hands-On.Web.Scraping.with.Python.pdf
10.8 MB
Hands-On Web Scraping with Python - 2023
#python #en
👍18🔥2
Python Tip for the day:
Use the "enumerate" function to iterate over a sequence and get the index of each element.

Sometimes when you're iterating over a list or other sequence in Python, you need to keep track of the index of the current element. One way to do this is to use a counter variable and increment it on each iteration, but this can be tedious and error-prone.

A better way to get the index of each element is to use the built-in "enumerate" function. The "enumerate" function takes an iterable (such as a list or tuple) as its argument and returns a sequence of (index, value) tuples, where "index" is the index of the current element and "value" is the value of the current element. Here's an example:
 Iterate over a list of strings and print each string with its index
strings = ['apple', 'banana', 'cherry', 'date']
for i, s in enumerate(strings):
print(f"{i}: {s}")

In this example, we use the "enumerate" function to iterate over a list of strings. On each iteration, the "enumerate" function returns a tuple containing the index of the current string and the string itself. We use tuple unpacking to assign these values to the variables "i" and "s", and then print out the index and string on a separate line.

The output of this code would be:
 apple
1: banana
2: cherry
3: date

Using the "enumerate" function can make your code more concise and easier to read, especially when you need to keep track of the index of each element in a sequence.
👍31😁54🥰2
Python.pdf
3 MB
Python HandBook
👍21
Hey 👋

Here you can access this great resources Mastering Python for AI ❤️‍🔥👇
https://dataanalysts.gumroad.com/l/aipython/ai

How to get it:
1. Click on the link
2. Enter the amount you like [Can be 0 as well :) ]
3. Click the 'I Want This' Button
4. Enter your email and get it delivered!

I'd appreciate it if you could give it a 5 star when you download it.

Join for more: https://telegram.me/sqlspecialist

Thanks 😊
👍115
HTML cheatsheet🔥🚀...
🤣29👍9🔥4🙏1
Which one is not a python library?
Anonymous Poll
9%
Pandas
5%
Numpy
12%
Seaborn
74%
Hackerrank
🤣83👍14😁7🔥64🙏4
Common Python Performance Issue
👍42
Benefits of learning Python Programming 👇👇

1. Web Development: Python frameworks like Django and Flask are popular for building dynamic websites and web applications.

2. Data Analysis: Python has powerful libraries like Pandas and NumPy for data manipulation and analysis, making it widely used in data science and analytics.

3. Machine Learning: Python's libraries such as TensorFlow, Keras, and Scikit-learn are extensively used for implementing machine learning algorithms and building predictive models.

4. Artificial Intelligence: Python is commonly used in AI development due to its simplicity and extensive libraries for tasks like natural language processing, image recognition, and neural network implementation.

5. Cybersecurity: Python is utilized for tasks such as penetration testing, network scanning, and creating security tools due to its versatility and ease of use.

6. Game Development: Python, along with libraries like Pygame, is used for developing games, prototyping game mechanics, and creating game scripts.

7. Automation: Python's simplicity and versatility make it ideal for automating repetitive tasks, such as scripting, data scraping, and process automation.
👍217
Learning Python for data science can be a rewarding experience. Here are some steps you can follow to get started:

1. Learn the Basics of Python: Start by learning the basics of Python programming language such as syntax, data types, functions, loops, and conditional statements. There are many online resources available for free to learn Python.

2. Understand Data Structures and Libraries: Familiarize yourself with data structures like lists, dictionaries, tuples, and sets. Also, learn about popular Python libraries used in data science such as NumPy, Pandas, Matplotlib, and Scikit-learn.

3. Practice with Projects: Start working on small data science projects to apply your knowledge. You can find datasets online to practice your skills and build your portfolio.

4. Take Online Courses: Enroll in online courses specifically tailored for learning Python for data science. Websites like Coursera, Udemy, and DataCamp offer courses on Python programming for data science.

5. Join Data Science Communities: Join online communities and forums like Stack Overflow, Reddit, or Kaggle to connect with other data science enthusiasts and get help with any questions you may have.

6. Read Books: There are many great books available on Python for data science that can help you deepen your understanding of the subject. Some popular books include "Python for Data Analysis" by Wes McKinney and "Data Science from Scratch" by Joel Grus.

7. Practice Regularly: Practice is key to mastering any skill. Make sure to practice regularly and work on real-world data science problems to improve your skills.

Remember that learning Python for data science is a continuous process, so be patient and persistent in your efforts. Good luck!

Please react 👍❤️ if you guys want me to share more of this content...
👍3818👏1